Linear groups saturated by subgroups of finite central dimension
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 117-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a field, $A$ be a vector space over $F$ and $G$ be a subgroup of $\mathrm{GL}(F,A)$. We say that $G$ has a dense family of subgroups, having finite central dimension, if for every pair of subgroups $H$, $K$ of $G$ such that $H\leqslant K$ and $H$ is not maximal in $K$ there exists a subgroup $L$ of finite central dimension such that $H\leqslant L\leqslant K$. In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension.
Keywords: linear group, infinite group, infinite dimensional linear group, dense family of subgroups, locally soluble group, finite central dimension.
@article{ADM_2020_29_1_a10,
     author = {N. N. Semko and L. V. Skaskiv and O. A. Yarovaya},
     title = {Linear groups saturated by subgroups of finite central dimension},
     journal = {Algebra and discrete mathematics},
     pages = {117--128},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a10/}
}
TY  - JOUR
AU  - N. N. Semko
AU  - L. V. Skaskiv
AU  - O. A. Yarovaya
TI  - Linear groups saturated by subgroups of finite central dimension
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 117
EP  - 128
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a10/
LA  - en
ID  - ADM_2020_29_1_a10
ER  - 
%0 Journal Article
%A N. N. Semko
%A L. V. Skaskiv
%A O. A. Yarovaya
%T Linear groups saturated by subgroups of finite central dimension
%J Algebra and discrete mathematics
%D 2020
%P 117-128
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a10/
%G en
%F ADM_2020_29_1_a10
N. N. Semko; L. V. Skaskiv; O. A. Yarovaya. Linear groups saturated by subgroups of finite central dimension. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 117-128. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a10/

[1] M. R. Dixon, L. A. Kurdachenko, “Linear groups with infinite central dimension”, Lond. Math. S., 339 (2007), 306–312 | MR | Zbl

[2] M. R. Dixon, L. A. Kurdachenko, “Abstract and linear groups with some specific restrictions”, Proceedings of the “Meeting on Group Theory and its applications, on the occasion of Javier Otal's 60th birthday” (Zaragoza, June 10–11, 2011), Madrid, 2012, 87–106 | MR | Zbl

[3] M. R. Dixon, L. A. Kurdachenko, J. M. Muños-Escolano, J. Otal, “Trends in infinite dimensional linear groups”, Lond. Math. S., 387 (2011), 271–282 | MR | Zbl

[4] L. A. Kurdachenko, “On some infinite dimensional linear groups”, Note Mat., 30:1 (2010), 21–36 | MR

[5] M. R. Dixon, M. J. Evans, L. A. Kurdachenko, “Linear groups with the minimal condition on subgroups of infinite central dimension”, J. Algebra, 277:1 (2004), 172–186 | DOI | MR | Zbl

[6] L. A. Kurdachenko, J. Otal, I. Ya. Subbotin, “Linear groups with the maximal condition on subgroups of infinite central dimension”, Publ. Mat., 50:1 (2006), 103–131 | DOI | MR | Zbl

[7] L. A. Kurdachenko, J. M. Muños-Escolano, J. Otal, “Antifinitary linear groups”, Forum Math., 20:1 (2008), 27–44 | DOI | MR | Zbl

[8] L. A. Kurdachenko, J. M. Muños-Escolano, J. Otal, “Soluble linear groups with some restrictions on subgroups of infinite central dimension”, Ischia Group Theory 2008, 2009, 156–173 | DOI | MR | Zbl

[9] L. A. Kurdachenko, J. M. Muños-Escolano, J. Otal, N. N. Semko, “Locally nilpotent linear groups with restrictions on their subgroups of infinite central dimension”, Geometriae Dedicata, 138:1 (2009), 69–81 | DOI | MR | Zbl

[10] J. M. Muños-Escolano, J. Otal, N. N. Semko, “Periodic linear groups with the weak chain conditions on subgroups of infinite central dimension”, Commun. Algebra, 36:2 (2008), 749–763 | DOI | MR

[11] A. Mann, “Groups with dense normal subgroups”, Israel J. Math., 6:1 (1968), 13–25 | DOI | MR | Zbl

[12] S. N. Chernikov, “Groups with a dense system of complemented subgroups”, Some Questions in Group Theory, Ins. Mat. Akad. Nauk Ukr. SSR, Kiev, 1975, 5–29 (Russian) | MR

[13] L. A. Kurdachenko, N. F. Kuzennyi, V. V. Pylaev, “Infinite groups with a generalized dense system of subnormal subgroups”, Ukr. Math. J., 33:3 (1981), 313–316 | DOI | MR

[14] L. A. Kurdachenko, V. E. Goretskii, “Groups with a dense system of almost normal subgroups”, Ukr. Math. J., 35:1 (1983), 37–40 | DOI | MR | Zbl

[15] L. A. Kurdachenko, M. F. Kuzennyi, M. M. Semko, “Groups with dense systems of infinite subgroups”, Dokl. Akad. Nauk Ukr. SSR, Ser. A., 1985, 7–9 | MR

[16] L. A. Kurdachenko, N. F. Kuzennyi, N. N. Semko, “Groups with a dense system of infinite almost normal subgroups”, Ukr. Math. J., 43:7–8 (1992), 904–908 | DOI | MR

[17] N. N. Semko, “On the construction of $\mathrm{CDN}[\,]$-groups with elementary commutant of rank two”, Ukr. Math. J., 49:10 (1997), 1570–1577 | DOI | MR | Zbl

[18] N. N. Semko, “On the structure of $\mathrm{CDN}[\,]$-groups”, Ukr. Math. J., 50:9 (1998), 1431–1441 | DOI | MR | Zbl

[19] N. N. Semko, “Structure of locally graded $\mathrm{CDN}(\,]$-groups”, Ukr. Math. J., 50:11 (1998), 1750–1754 | DOI | MR | Zbl

[20] N. N. Semko, “Structure of locally graded $\mathrm{CDN}[\,)$-groups”, Ukr. Math. J., 51:3 (1999), 427–433 | DOI | MR | Zbl

[21] M. R. Dixon, L. A. Kurdachenko, I.Ya. Subbotin, Ranks of groups: the tools, characteristics, and restrictions, New Jersey, 2017 | MR | Zbl

[22] Ya. Berkovich, Groups of prime power order, v. 1, Berlin, 2008 | MR

[23] D. Gorenstein, Finite groups, New York, 1980 | MR

[24] L. Fuchs, Infinite abelian groups, v. 1, New York, 1970 | MR | Zbl

[25] G. Karpilovsky, Field theory, New York, 1988 | MR | Zbl

[26] M. R. Dixon, Sylow theory, formations and Fitting classes in locally finite groups, Singapore, 1994 | MR | Zbl

[27] B. A. F. Wehrfritz, Infinite linear groups, Berlin, 1973 | MR | Zbl

[28] M. I. Kargapolov, Yu. I. Merzlyakov, Foundations of group theory, Moskow, 1982 | MR | Zbl

[29] L. A. Kurdachenko, J. Otal, I. Ya. Subbotin, Groups with prescribed quotient groups and associated module theory, New Jersey, 2002 | MR | Zbl