Adjoint functors, preradicals and closure operators in module categories
Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 260-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article preradicals and closure operators are studied in an adjoint situation, defined by two covariant functors between the module categories $R$-Mod and $S$-Mod. The mappings which determine the relationship between the classes of preradicals and the classes of closure operators of these categories are investigated. The goal of research is to elucidate the concordance (compatibility) of these mappings. For that some combinations of them, consisting of four mappings, are considered and the commutativity of corresponding diagrams (squares) is studied. The obtained results show the connection between considered mappings in adjoint situation.
Keywords: closure operator, adjoint functors, preradical, category of modules, lattice of submodules.
Mots-clés : natural transformation
@article{ADM_2019_28_2_a9,
     author = {A. I. Kashu},
     title = {Adjoint functors, preradicals and closure operators in module categories},
     journal = {Algebra and discrete mathematics},
     pages = {260--277},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a9/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Adjoint functors, preradicals and closure operators in module categories
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 260
EP  - 277
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a9/
LA  - en
ID  - ADM_2019_28_2_a9
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Adjoint functors, preradicals and closure operators in module categories
%J Algebra and discrete mathematics
%D 2019
%P 260-277
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a9/
%G en
%F ADM_2019_28_2_a9
A. I. Kashu. Adjoint functors, preradicals and closure operators in module categories. Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 260-277. http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a9/

[1] F. W. Anderson, K. R. Fuller, Rings and categories of modules, Springer-Verlag, New York, 1992 | MR | Zbl

[2] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach Science Publishers, 1991 | MR | Zbl

[3] L. Bican, T. Kepka, P. Nemec, Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl

[4] P. Gabriel, “Des categories abeliennes”, Bull. Soc. Math. France, 90 (1962), 323–448 | DOI | MR | Zbl

[5] D. Dikranjan, V. Tholen, Categorical structure of closure operators, Kluwer Academic Publishers, 1995 | MR | Zbl

[6] D. Dikranjan, E. Giuli, “Factorizations, injectivity and completness in categories of modules”, Commun. in Algebra, 19:1 (1991), 45–83 | DOI | MR | Zbl

[7] D. Dikranjan, E. Giuli, “Closure operators I”, Topology and its Applications, 27 (1987), 129–143 | DOI | MR | Zbl

[8] A. I. Kashu, “Preradicals in adjoint situation”, Matem. issled. (Kishinev), 48 (1978), 48–64 (in Russian) | MR | Zbl

[9] A. I. Kashu, “On correspondence of preradicals and torsions in adjoint situation”, Matem. issled. (Kishinev), 56 (1980), 62–84 (in Russian) | MR | Zbl

[10] A. I. Kashu, Functors and torsions in categories of modules, Academy of Sciences of Moldova, Institute of Mathematics, Khishinev, 1997 (in Russian) | MR

[11] A. I. Kashu, “Closure operators in modules and adjoint functors I”, Algebra Discrete Math., 25:1 (2018), 98–117 | MR | Zbl