Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_28_2_a4, author = {Matthew St. Denis and Wai Ling Yee}, title = {A simplified proof of the reduction point crossing sign formula for {Verma} modules}, journal = {Algebra and discrete mathematics}, pages = {195--202}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a4/} }
TY - JOUR AU - Matthew St. Denis AU - Wai Ling Yee TI - A simplified proof of the reduction point crossing sign formula for Verma modules JO - Algebra and discrete mathematics PY - 2019 SP - 195 EP - 202 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a4/ LA - en ID - ADM_2019_28_2_a4 ER -
Matthew St. Denis; Wai Ling Yee. A simplified proof of the reduction point crossing sign formula for Verma modules. Algebra and discrete mathematics, Tome 28 (2019) no. 2, pp. 195-202. http://geodesic.mathdoc.fr/item/ADM_2019_28_2_a4/
[1] Michel Duflo., “Théorie de Mackey pour les groupes de Lie algébriques”, Acta Math., 149:3–4 (1982), 153–213 | MR | Zbl
[2] Justin Lariviere and Wai Ling Yee, Signature characters of invariant Hermitian forms on irreducible Verma modules of singular highest weight and Hall-Littlewood polynomials, Preprint, 2018 | MR
[3] George W. Mackey, “Unitary representations of group extensions I”, Acta Math., 99 (1958), 265–311 | DOI | MR | Zbl
[4] David A. Vogan, “Unitarizability of certain series of representations”, Annals of Mathematics, 120 (1984), 141–187 | DOI | MR | Zbl
[5] Nolan R. Wallach, “On the unitarizability of derived functor modules”, Inventiones Mathematicae, 78:1 (1984), 131–141 | DOI | MR | Zbl
[6] Wai Ling Yee, “The signature of the Shapovalov form on irreducible Verma modules”, Representation Theory, 9 (2005), 638–677 | DOI | MR | Zbl
[7] Wai Ling Yee, “Signature characters of invariant Hermitian forms on irreducible Verma modules and Hall-Littlewood polynomials”, Mathematische Zeitschrift, 292 (2019), 267–305 | DOI | MR | Zbl