Lie algebras of derivations with large abelian ideals
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 123-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb K$ be a field of characteristic zero, $A=\mathbb{K}[x_{1},\dots,x_{n}]$ the polynomial ring and $R=\mathbb{K}(x_{1},\dots,x_{n})$ the field of rational functions. The Lie algebra ${\widetilde W}_{n}(\mathbb{K}):=\operatorname{Der}_{\mathbb{K}}R$ of all $\mathbb{K}$-derivation on $R$ is a vector space (of dimension n) over $R$ and every its subalgebra $L$ has rank $\operatorname{rk}_{R}L=\dim_{R}RL$. We study subalgebras $L$ of rank $m$ over $R$ of the Lie algebra $\widetilde{W}_{n}(\mathbb{K})$ with an abelian ideal $I\subset L$ of the same rank $m$ over $R$. Let $F$ be the field of constants of $L$ in $R$. It is proved that there exist a basis $D_1,\dots,D_m$ of $FI$ over $F$, elements $a_1,\dots,a_k\in R$ such that $D_i(a_j)=\delta_{ij}$, $i=1,\dots,m$, $j=1,\dots,k$, and every element $D\in FL$ is of the form $D=\sum_{i=1}^{m}f_i(a_1,\dots,a_k)D_i$ for some $f_i\in F[t_1,\dots,t_k]$, $\deg f_i\leq 1$. As a consequence it is proved that $L$ is isomorphic to a subalgebra (of a very special type) of the general affine Lie algebra $\mathrm{aff}_{m}(F)$.
Keywords: Lie algebra, vector field, polynomial ring, abelian ideal, derivation.
@article{ADM_2019_28_1_a8,
     author = {I. S. Klymenko and S. V. Lysenko and A. P. Petravchuk},
     title = {Lie algebras of derivations with large abelian ideals},
     journal = {Algebra and discrete mathematics},
     pages = {123--129},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a8/}
}
TY  - JOUR
AU  - I. S. Klymenko
AU  - S. V. Lysenko
AU  - A. P. Petravchuk
TI  - Lie algebras of derivations with large abelian ideals
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 123
EP  - 129
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a8/
LA  - en
ID  - ADM_2019_28_1_a8
ER  - 
%0 Journal Article
%A I. S. Klymenko
%A S. V. Lysenko
%A A. P. Petravchuk
%T Lie algebras of derivations with large abelian ideals
%J Algebra and discrete mathematics
%D 2019
%P 123-129
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a8/
%G en
%F ADM_2019_28_1_a8
I. S. Klymenko; S. V. Lysenko; A. P. Petravchuk. Lie algebras of derivations with large abelian ideals. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 123-129. http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a8/

[1] Ie.Chapovskyi, D.Efimov, A.Petravchuk, “Solvable Lie algebras of derivations of polynomial rings in three variables”, Applied problems of Mechanics and Mathematics, 16, Lviv, 2018, 7–13

[2] A. González-López, N. Kamran and P. J. Olver, “Lie algebras of differential operators in two complex variables”, Amer. J. Math., 114 (1992), 1163–1185 | DOI | MR | Zbl

[3] Ie. O. Makedonskyi and A. P. Petravchuk, “On nilpotent and solvable Lie algebras of derivations”, J. Algebra, 401 (2014), 245–257 | DOI | MR | Zbl

[4] I. S. Klimenko, S. V. Lysenko, A. P. Petravchuk, “Lie algebras of derivations with abelian ideals of maximal rank”, Uzhgorod University, 31:2 (2017), 83–90 (in Ukrainian) | MR

[5] A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994 | MR | Zbl

[6] A. Nowicki, “Commutative basis of derivations in polynomial and power series rings”, J. Pure Appl. Algebra, 40 (1986), 279–283 | DOI | MR

[7] S. Lie, Theorie der Transformationsgruppen, v. 3, Leipzig, 1893 | Zbl