On the zero forcing number of graphs and their splitting graphs
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 29-43

Voir la notice de l'article provenant de la source Math-Net.Ru

In [10], the notion of the splitting graph of a graph was introduced. In this paper we compute the zero forcing number of the splitting graph of a graph and also obtain some bounds besides finding the exact value of this parameter. We prove for any connected graph $\Gamma$ of order $n \ge 2$, $Z[S(\Gamma)]\le 2 Z(\Gamma)$ and also obtain many classes of graph in which $Z[S(\Gamma)]= 2 Z(\Gamma)$. Further, we show some classes of graphs in which $Z[S(\Gamma)] 2 Z(\Gamma)$.
Keywords: zero forcing number, splitting graph, path cover number and domination number of a graph.
@article{ADM_2019_28_1_a2,
     author = {Baby Chacko and Charles Dominic and K. P. Premodkumar},
     title = {On the zero forcing number of graphs and their splitting graphs},
     journal = {Algebra and discrete mathematics},
     pages = {29--43},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a2/}
}
TY  - JOUR
AU  - Baby Chacko
AU  - Charles Dominic
AU  - K. P. Premodkumar
TI  - On the zero forcing number of graphs and their splitting graphs
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 29
EP  - 43
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a2/
LA  - en
ID  - ADM_2019_28_1_a2
ER  - 
%0 Journal Article
%A Baby Chacko
%A Charles Dominic
%A K. P. Premodkumar
%T On the zero forcing number of graphs and their splitting graphs
%J Algebra and discrete mathematics
%D 2019
%P 29-43
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a2/
%G en
%F ADM_2019_28_1_a2
Baby Chacko; Charles Dominic; K. P. Premodkumar. On the zero forcing number of graphs and their splitting graphs. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 29-43. http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a2/