Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_28_1_a1, author = {Eskander Ali and Ahed Hassoon}, title = {CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$}, journal = {Algebra and discrete mathematics}, pages = {20--28}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a1/} }
TY - JOUR AU - Eskander Ali AU - Ahed Hassoon TI - CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$ JO - Algebra and discrete mathematics PY - 2019 SP - 20 EP - 28 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a1/ LA - en ID - ADM_2019_28_1_a1 ER -
Eskander Ali; Ahed Hassoon. CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a1/
[1] Babai L., Frankl P., “Isomorphisms of Cayley graphs I”, Colloq. Math. Soc. J. Bolyai', Combinatorics Keszthely, 1976, 35–52 | MR
[2] Babai L., Frankl P., “Isomorphisms of Cayley graphs II”, Acta Mathematica Hungarica, 34:1–2 (1979), 177–183 | MR | Zbl
[3] Babai L., “Isomorphism problem for a class of point-symmetric structures”, Acta Mathematica Hungarica, 29:3–4 (1977), 329–336 | MR | Zbl
[4] Dobson E., “Isomorphism problem for Cayley graphs of $\mathbb{Z}_p^3$”, Discrete Mathematics, 147:1–3 (1995), 87–94 | DOI | MR | Zbl
[5] Bailey R. A., Cameron P. J., “Crested products of association schemes”, Journal of the London Mathematical Society-Cambridge University Press, 72:1 (2005), 1–24 | DOI | MR | Zbl
[6] Kovács I., Grigory R., $CI$-property for decomposable Schur rings over an elementary abelian group, 2018, arXiv: 1802.04571
[7] Klin M., Poschel R., “The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings”, Algebraic methods in graph theory, Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam, 1978, 405–434 | DOI | MR
[8] Feng Q., Kovács I., Elementary abelian groups of rank 5 are DCI-groups, 2017, arXiv: 1705.02929 | MR
[9] Hirasaka M., Muzychuk M., “An elementary abelian group of rank 4 is a CI-group”, Journal of Combinatorial Theory, Series A, 94:2 (2001), 339–362 | DOI | MR | Zbl
[10] Kim K., “On $p$-Schur rings over abelian groups of order $p^3$”, Communications in Algebra, 42:10 (2014), 4456–4463 | DOI | MR | Zbl
[11] Kovács I., Muzychuk M., “The Group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q$ is a CI-Group”, Communications in Algebra, 37:10 (2009), 3500–3515 | DOI | MR | Zbl
[12] Li C. H., “On isomorphisms of finite Cayley graphs—a survey”, Discrete Mathematics, 256:1–2 (2002), 301–334 | MR | Zbl
[13] Muzychuk M., “An elementary abelian group of large rank is not a CI-group”, Discrete Mathematics, 264:1–3 (2003), 167–185 | DOI | MR | Zbl
[14] Muzychuk M., “Adam's Conjecture is True in the Square-Free Case”, Journal of Combinatorial Theory, Series A, 72 (1995), 118–134 | DOI | MR | Zbl
[15] Evdokimov S., Ponomarenko I., “Schurity of $s$-rings over a cyclic group and generalized wreath product of permutation groups”, St. Petersburg Mathematical Journal, 24:3 (2013), 431–460 | DOI | MR | Zbl
[16] Evdokimov S., Kovács I., Ponomarenko I., “On schurity of finite abelian groups”, Communications in Algebra, 44:1 (2016), 101–117 | DOI | MR | Zbl
[17] Evdokimov S., Kovács I., Ponomarenko I., “Characterization of cyclic Schur groups”, St. Petersburg Mathematical Journal, 25:5 (2014), 755–773 | DOI | MR | Zbl
[18] Evdokimov S., Ponomarenko I., “Characterization of cyclotomic schemes and normal Schur rings over a cyclic group”, Algebra and Analysis, 14:2 (2002), 11–55 | MR
[19] Spiga P., Wang Q., “An answer to Hirasaka and Muzychuk: Every $p$-Schur ring over $C_p^3$ is Schurian”, Discrete Mathematics, 308:9 (2008), 1760–1763 | DOI | MR | Zbl
[20] Grigory R., “On Schur $p$-Groups of odd order”, Journal of Algebra and Its Applications, 16:2 (2017), 1750045–1750074 | MR
[21] Tamaschke O., “A Generalization of Second Isomorphism Theorem in Group Theory”, Atti Della Accademia Nazionale Dei Lincei Rendiconti-classe Di Scienze Fisiche-matematiche, Naturali, 45:3–4 (1968) | MR | Zbl
[22] Wielandt H., Finite Permutation Groups, Academic Press, Berlin, 1964 | MR | Zbl
[23] M. Klin, C. Pech, S. Reichard, COCO2P—A GAP package, 0.14, 07.02.2015 http://www.math.tu-dresden.de/~pech/COCO2P