CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 20-28
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$ is CI-group, where $p$, $q$, $r$ are primes such that $q$ and $r$ divide $p-1$, and $r$ divides $q-1$.
Keywords:
CI-groups, Schur ring, wreath product.
@article{ADM_2019_28_1_a1,
author = {Eskander Ali and Ahed Hassoon},
title = {CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$},
journal = {Algebra and discrete mathematics},
pages = {20--28},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a1/}
}
TY - JOUR
AU - Eskander Ali
AU - Ahed Hassoon
TI - CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$
JO - Algebra and discrete mathematics
PY - 2019
SP - 20
EP - 28
VL - 28
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a1/
LA - en
ID - ADM_2019_28_1_a1
ER -
Eskander Ali; Ahed Hassoon. CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a1/