CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 20-28

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$ is CI-group, where $p$, $q$, $r$ are primes such that $q$ and $r$ divide $p-1$, and $r$ divides $q-1$.
Keywords: CI-groups, Schur ring, wreath product.
@article{ADM_2019_28_1_a1,
     author = {Eskander Ali and Ahed Hassoon},
     title = {CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$},
     journal = {Algebra and discrete mathematics},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a1/}
}
TY  - JOUR
AU  - Eskander Ali
AU  - Ahed Hassoon
TI  - CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 20
EP  - 28
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a1/
LA  - en
ID  - ADM_2019_28_1_a1
ER  - 
%0 Journal Article
%A Eskander Ali
%A Ahed Hassoon
%T CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$
%J Algebra and discrete mathematics
%D 2019
%P 20-28
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a1/
%G en
%F ADM_2019_28_1_a1
Eskander Ali; Ahed Hassoon. CI-property for the group $(\mathbb{Z}_p)^2\times\mathbb{Z}_q\times\mathbb{Z}_r$. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/ADM_2019_28_1_a1/