Commutator subgroups of the power subgroups of generalized Hecke groups
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 280-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$, $q\geq 2$ be relatively prime integers and let $H_{p,q}$ be the generalized Hecke group associated to $p$ and $q$. The generalized Hecke group $H_{p,q}$ is generated by $X(z)=-(z-\lambda _{p})^{-1}$ and $Y(z)=-(z+\lambda_{q})^{-1}$ where $\lambda _{p}=2\cos \frac{\pi }{p}$ and $\lambda_{q}=2\cos \frac{\pi }{q}$. In this paper, for positive integer $m$, we study the commutator subgroups $(H_{p,q}^{m})'$ of the power subgroups $H_{p,q}^{m}$ of generalized Hecke groups $H_{p,q}$. We give an application related with the derived series for all triangle groups of the form $(0;p,q,n)$, for distinct primes $p$, $q$ and for positive integer $n$.
Keywords: generalized Hecke groups, power subgroups, commutator subgroups.
@article{ADM_2019_27_2_a9,
     author = {\"Ozden Koruo\u{g}lu and Taner Meral and Recep Sahin},
     title = {Commutator subgroups of the power subgroups of generalized {Hecke} groups},
     journal = {Algebra and discrete mathematics},
     pages = {280--291},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a9/}
}
TY  - JOUR
AU  - Özden Koruoğlu
AU  - Taner Meral
AU  - Recep Sahin
TI  - Commutator subgroups of the power subgroups of generalized Hecke groups
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 280
EP  - 291
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a9/
LA  - en
ID  - ADM_2019_27_2_a9
ER  - 
%0 Journal Article
%A Özden Koruoğlu
%A Taner Meral
%A Recep Sahin
%T Commutator subgroups of the power subgroups of generalized Hecke groups
%J Algebra and discrete mathematics
%D 2019
%P 280-291
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a9/
%G en
%F ADM_2019_27_2_a9
Özden Koruoğlu; Taner Meral; Recep Sahin. Commutator subgroups of the power subgroups of generalized Hecke groups. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 280-291. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a9/

[1] F. Ates, I. N. Cangül, E. K. Cetinalp, A. S. Cevik and E. G. Karpuz, “On Commutator and Power Subgroups of Some Coxeter Groups”, Appl. Math. Inf. Sci., 10:2 (2016), 777–783 | DOI

[2] F. Ates and A. S. Cevik, “Knit products of some groups and their applications”, Rend. Semin. Mat. Univ. Padova, 121 (2009), 1–11 | DOI | Zbl

[3] I. I. Bouw and M. Möller, “Teichmüller curves, triangle groups, and Lyapunov exponents”, Ann. of Math. (2), 172:1 (2010), 139–185 | DOI | Zbl

[4] G. Burde and H. Zieschang, Knots, De Gruyter Studies in Mathematics, 5, 2nd ed., Walter de Gruyter, Berlin, 2003 | Zbl

[5] I. N. Cangül, R. Sahin, S. Ikikardes and Ö. Koruoğlu, “Power subgroups of some Hecke groups. II”, Houston J. Math., 33:1, 33–42 | Zbl

[6] I. N. Cangül and D. Singerman, “Normal subgroups of Hecke groups and regular maps”, Math. Proc. Camb. Phil. Soc., 123 (1998), 59–74 | DOI | Zbl

[7] K. Calta and T. A. Schmidt, “Infinitely many lattice surfaces with special pseudo-Anosov maps”, J. Mod. Dyn., 7:2 (2013), 239–254 | DOI | Zbl

[8] K. Calta and T. A. Schmidt, “Continued fractions for a class of triangle groups”, J. Aust. Math. Soc., 93:1–2 (2012), 21–42 | DOI | Zbl

[9] A. S. Cevik, N. Y. Özgür, R. Sahin, “The extended Hecke groups as semi-direct products and related results”, Int. J. Appl. Math. Stat., 13 (2008), 63–72

[10] B. Demir, Ö. Koruoğlu and R. Sahin, “Conjugacy Classes of Extended Generalized Hecke Groups”, Rev. Un. Mat. Argentina, 57:1 (2016), 49–56 | Zbl

[11] B. Demir, Ö. Koruoğlu and R. Sahin, “On Normal Subgroups of Generalized Hecke Groups”, An. Şt. Univ. Ovidius Constanta, 24:2 (2016)

[12] E. Hecke, “Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung”, Math. Ann., 112 (1936), 664–699 | DOI

[13] W. P. Hooper, “Grid graphs and lattice surfaces”, Int. Math. Res. Not., 12 (2013), 2657–2698 | DOI | Zbl

[14] S. Huang, “Generalized Hecke groups and Hecke polygons”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 187–214 | Zbl

[15] S. Ikikardes, O. Koruoglu and R. Sahin, “Power subgroups groups of some Hecke groups”, Rocky Mountain Journal of Mathematics, 2 (2006)

[16] Ş. Kaymak, B. Demir, Ö. Koruoğlu and R. Sahin, “Commutator Subgroups of Generalized Hecke and Extended Generalized Hecke Groups”, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., 26:1 (2018), 159–168 | Zbl

[17] C. L. Lang and M. L. Lang, “Arithmetic and geometry of the Hecke groups”, J. Algebra, 460 (2016), 392–417 | DOI | Zbl

[18] C. L. Lang and M. L. Lang, Identifying normal and congruence subgroups, arXiv: 1501.00743

[19] J. Lehner, “Uniqueness of a class of Fuchsian groups”, Illinois J. Math., 19 (1975), 308–315 | DOI | Zbl

[20] J. Lehner, and M. Newman, “Real two-dimensional representations of the modular group and related groups”, Amer. J. Math., 87 (1965), 945–954 | DOI | Zbl

[21] G. J. Martin, “The geometry and arithmetic of Kleinian groups”, Handbook of group actions, v. I, Adv. Lect. Math., 31, Int. Press, Somerville, MA, 2015, 411–494

[22] H. Movasati and K. M. Shokri, “Automorphic forms for triangle groups: integrality properties”, J. Number Theory, 145 (2014), 67–78 | DOI | Zbl

[23] L. P. Neuwirth, “A remark on knot groups with a center”, Proc. Amer. Math. Soc., 14 (1963), 378–379 | DOI | Zbl

[24] M. Newman and J. R. Smart, “Note on a subgroup of the modular group”, Proc. Amer. Math. Soc., 14 (1963), 102–104 | Zbl

[25] J. Nielsen, “Kommutatorgruppen für das freie Produkt von zyklischen Gruppen”, Mat. Tidsskr. B, 1948, 49–56 (Danish) | Zbl

[26] S. Nugent and J. Voight, “On the arithmetic dimension of triangle groups”, Math. Comp., 86:306 (2017), 1979–2004 | DOI | Zbl

[27] R. Sahin and O. Bizim, “Some subgroups of the extended Hecke groups $\overline{H}(\lambda_q)$”, Acta Math. Sci., Ser. B, Engl. Ed., 23:4 (2003), 497–502 | Zbl

[28] R. Sahin, O. Bizim, and I. N. Cangül, “Commutator subgroups of the extended Hecke groups”, Czech. Math. J., 54:1 (2004), 253–259 | DOI | Zbl

[29] R. Sahin, S. Ikikardes, “Squares of congruence subgroups of the extended modular group”, Miskolc Math. Notes, 14 (2013), 1031–1035 | DOI | Zbl

[30] R. Sahin, S. Ikikardes, and Ö. Koruoğlu, “Some normal subgroups of the extended Hecke groups $\overline{H}(\lambda_p)$”, Rocky Mountain J. Math., 36:3 (2006), 1033–1048 | DOI | Zbl

[31] R. Sahin and Ö. Koruoğlu, “Commutator Subgroups of the Power Subgroups of Hecke Groups $H(\lambda_{q})$”, Ramanujan J., 24:2 (2011), 151–159 | DOI | Zbl

[32] R. Sahin and Ö. Koruoğlu, “Commutator subgroups of the power subgroups of Hecke groups $H(\lambda_q)$ II”, C.R. Math. Acad. Sci. Paris, 349:3–4 (2011), 127–130 | DOI | Zbl

[33] R. Sahin, Ö. Koruoğlu and S. Ikikardes, “On the extended Hecke groups $\overline{H}(\lambda_5)$”, Algebra Colloq., 13 (2006), 17–23 | DOI | Zbl

[34] R. Sahin, T. Meral and Ö. Koruoglu, “Power and Free Normal Subgroups of Generalized Hecke Groups”, Asian-European Journal of Mathematics, accepted for publication | DOI

[35] Z. Sarıgedik, S. Ikikardes and R. Sahin, “Power subgroups of the extended Hecke groups”, Miskolc Math. Notes, 16:1 (2015), 483–490 | DOI | Zbl

[36] V. V. Tsanov, “Triangle groups, automorphic forms, and torus knots”, Enseign. Math. (2), 59:1–2 (2013), 73–113 | DOI | Zbl

[37] W. A. Veech, “Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards”, Invent. Math., 97:3 (1989), 553–583 | DOI | Zbl

[38] C. C. Ward, “Calculation of Fuchsian groups associated to billiards in a rational triangle”, Ergodic Theory Dynam. Systems, 18:4 (1998), 1019–1042 | DOI | Zbl

[39] R. Zomorrodian, “Residual solubility of Fuchsian groups”, Illinois J. Math., 51:3 (2007), 697–703 | DOI | Zbl