Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_27_2_a8, author = {N. Jahanbakhsh and R. Nikandish and M. J. Nikmehr}, title = {On the inclusion ideal graph of a poset}, journal = {Algebra and discrete mathematics}, pages = {269--279}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a8/} }
N. Jahanbakhsh; R. Nikandish; M. J. Nikmehr. On the inclusion ideal graph of a poset. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 269-279. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a8/
[1] S. Akbari, M. Habibi, A. Majidinia, R. Manaviyat, “The inclusion ideal graph of rings”, Comm. Algebra, 43 (2015), 2457–2465 | DOI | Zbl
[2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976 | Zbl
[3] Y. Civan, “Upper maximal graphs of posets”, Order, 30 (2013 677–688) | DOI | Zbl
[4] R. Halaš, M. Jukl, “On Beck's coloring of posets”, Discrete Math., 309 (2009), 4584–4589 | DOI | Zbl
[5] V. Joshi, “Zero divisor graph of a poset with respect to an ideal”, Order, 29 (2012), 499–506 | DOI | Zbl
[6] J. D. LaGrange, K. A. Roy, “Poset graphs and the lattice of graph annihilators”, Discrete Math., 313 (2013), 1053–1062 | DOI | Zbl
[7] S. K. Nimbhorkar, M. P. Wasadikar, L. DeMeyer, “Coloring of semilattices”, Ars Combin, 12 (2007), 97–104
[8] S. Roman, Lattices and Ordered Sets, Springer, New York, 2008 | Zbl
[9] S. Rudeanu, Sets and Ordered Structures, University of Bucharest, Romania, 2012
[10] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001