Solutions of the matrix linear bilateral polynomial equation and their structure
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 243-251
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the row and column structure of solutions of the matrix polynomial equation
$$
A(\lambda)X(\lambda)+Y(\lambda)B(\lambda)=C(\lambda),
$$
where $A(\lambda), B(\lambda)$ and $C(\lambda)$ are the matrices over the ring of polynomials $\mathcal{F}[\lambda]$ with coefficients in field $\mathcal{F}$. We establish the bounds for degrees of the rows and columns which depend on degrees of the corresponding invariant factors of matrices $A (\lambda)$ and $ B(\lambda)$. A criterion for uniqueness of such solutions is pointed out. A method for construction of such solutions is suggested. We also established the existence of solutions of this matrix polynomial equation whose degrees are less than degrees of the Smith normal forms of matrices $A(\lambda)$ and $ B(\lambda)$.
Mots-clés :
matrix polynomial equation, solution, polynomial matrix, semiscalar equivalence.
@article{ADM_2019_27_2_a6,
author = {Nataliia S. Dzhaliuk and Vasyl' M. Petrychkovych},
title = {Solutions of the matrix linear bilateral polynomial equation and their structure},
journal = {Algebra and discrete mathematics},
pages = {243--251},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/}
}
TY - JOUR AU - Nataliia S. Dzhaliuk AU - Vasyl' M. Petrychkovych TI - Solutions of the matrix linear bilateral polynomial equation and their structure JO - Algebra and discrete mathematics PY - 2019 SP - 243 EP - 251 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/ LA - en ID - ADM_2019_27_2_a6 ER -
%0 Journal Article %A Nataliia S. Dzhaliuk %A Vasyl' M. Petrychkovych %T Solutions of the matrix linear bilateral polynomial equation and their structure %J Algebra and discrete mathematics %D 2019 %P 243-251 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/ %G en %F ADM_2019_27_2_a6
Nataliia S. Dzhaliuk; Vasyl' M. Petrychkovych. Solutions of the matrix linear bilateral polynomial equation and their structure. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/