Solutions of the matrix linear bilateral polynomial equation and their structure
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 243-251

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the row and column structure of solutions of the matrix polynomial equation $$ A(\lambda)X(\lambda)+Y(\lambda)B(\lambda)=C(\lambda), $$ where $A(\lambda), B(\lambda)$ and $C(\lambda)$ are the matrices over the ring of polynomials $\mathcal{F}[\lambda]$ with coefficients in field $\mathcal{F}$. We establish the bounds for degrees of the rows and columns which depend on degrees of the corresponding invariant factors of matrices $A (\lambda)$ and $ B(\lambda)$. A criterion for uniqueness of such solutions is pointed out. A method for construction of such solutions is suggested. We also established the existence of solutions of this matrix polynomial equation whose degrees are less than degrees of the Smith normal forms of matrices $A(\lambda)$ and $ B(\lambda)$.
Mots-clés : matrix polynomial equation, solution, polynomial matrix, semiscalar equivalence.
@article{ADM_2019_27_2_a6,
     author = {Nataliia S. Dzhaliuk and Vasyl' M. Petrychkovych},
     title = {Solutions of the matrix linear bilateral polynomial equation and their structure},
     journal = {Algebra and discrete mathematics},
     pages = {243--251},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/}
}
TY  - JOUR
AU  - Nataliia S. Dzhaliuk
AU  - Vasyl' M. Petrychkovych
TI  - Solutions of the matrix linear bilateral polynomial equation and their structure
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 243
EP  - 251
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/
LA  - en
ID  - ADM_2019_27_2_a6
ER  - 
%0 Journal Article
%A Nataliia S. Dzhaliuk
%A Vasyl' M. Petrychkovych
%T Solutions of the matrix linear bilateral polynomial equation and their structure
%J Algebra and discrete mathematics
%D 2019
%P 243-251
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/
%G en
%F ADM_2019_27_2_a6
Nataliia S. Dzhaliuk; Vasyl' M. Petrychkovych. Solutions of the matrix linear bilateral polynomial equation and their structure. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/