Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_27_2_a6, author = {Nataliia S. Dzhaliuk and Vasyl' M. Petrychkovych}, title = {Solutions of the matrix linear bilateral polynomial equation and their structure}, journal = {Algebra and discrete mathematics}, pages = {243--251}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/} }
TY - JOUR AU - Nataliia S. Dzhaliuk AU - Vasyl' M. Petrychkovych TI - Solutions of the matrix linear bilateral polynomial equation and their structure JO - Algebra and discrete mathematics PY - 2019 SP - 243 EP - 251 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/ LA - en ID - ADM_2019_27_2_a6 ER -
%0 Journal Article %A Nataliia S. Dzhaliuk %A Vasyl' M. Petrychkovych %T Solutions of the matrix linear bilateral polynomial equation and their structure %J Algebra and discrete mathematics %D 2019 %P 243-251 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/ %G en %F ADM_2019_27_2_a6
Nataliia S. Dzhaliuk; Vasyl' M. Petrychkovych. Solutions of the matrix linear bilateral polynomial equation and their structure. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a6/
[1] J. A. Dias da Silva, T. J. Laffey, “On simultaneous similarity of matrices and related questions”, Linear Algebra Appl., 291 (1999), 167–184 | DOI | Zbl
[2] N. S. Dzhaliuk, V. M. Petrychkovych, “The matrix linear unilateral and bilateral equations with two variables over commutative rings”, ISRN Algebra, 2012, 205478, 14 pp. | DOI | Zbl
[3] N. Dzhaliuk, V. Petrychkovych, “The semiscalar equivalence of polynomial matrices and the solution of the Sylvester matrix polynomial equations”, Math. Bull. Shevchenko Sci. Soc., 9 (2012), 81–88 (Ukrainian)
[4] J. Feinstein, J. Bar-Ness, “On the uniqueness of the minimal solution the matrix polynomial equation $A(\lambda)X(\lambda)+Y(\lambda)B(\lambda)=C(\lambda)$”, J. Franklin Inst., 310:2 (1980), 131–134 | DOI | Zbl
[5] T. Kaczorek, Polynomial and Rational Matrices: Applications in Dynamical System Theory, Commun. and Control Eng. Ser., Springer, London, 2007 | DOI
[6] P. S. Kazimirskii, V. M. Petrychkovych, “On the equivalence of polynomial matrices”, Theoretical and Applied Problems of Algebra and Differential Equations, 1977, 61–66 (Ukrainian)
[7] V. Kuc̆era, “Alqebraic theory of discrete optimal control for single-variable systems I”, Kybernetika, 9:2 (1973), 3–56
[8] N. B. Ladzoryshyn, “Integer solutions of matrix linear unilateral and bilateral equations over quadratic rings”, J. Math. Sci., 223:1 (2017), 50–59 | DOI
[9] V. Petrychkovych, “Cell-triangular and cell-diagonal factorizations of cell-triangular and cell-diagonal polynomial matrices”, Math. Notes., 37:6 (1985), 431–435 | DOI
[10] V. M. Petrychkovych, “On semiscalar equivalence and the Smith normal form of polynomial matrices”, J. Math. Sci., 66:1 (1993), 2030–2033 | DOI
[11] V. Petrychkovych, “Generalized equivalence of pair of matrices”, Linear Multilinear Algebra, 48 (2000), 179–188 | DOI | Zbl
[12] V. Petrychkovych, “Standard form of pairs of matrices with respect to generalized eguivalence”, Visnyk Lviv. Univ., 61 (2003), 153–160
[13] V. Petrychkovych, Generalized Equivalence of Matrices and its Collections and Factorization of Matrices over Rings, Pidstryhach Inst. Appl. Probl. Mech. and Math. of the NAS of Ukraine, L'viv, 2015 (Ukrainian) | Zbl
[14] W. E. Roth, “The equations $AX-YB=C$ and $AX-XB=C$ in matrices”, Proc. Amer. Math. Soc., 3 (1952), 392–396 | Zbl