The classification of serial posets with the non-negative quadratic Tits form being principal
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 202-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using (introduced by the first author) the method of (min, max)-equivalence, we classify all serial principal posets, i.e. the posets $S$ satisfying the following conditions: (1) the quadratic Tits form $q_S(z)\colon\mathbb{Z}^{|S|+1}\to\mathbb{Z}$ of $S$ is non-negative; (2) $\operatorname{Ker}q_S(z):=\{t\mid q_S(t)=0\}$ is an infinite cyclic group (equivalently, the corank of the symmetric matrix of $q_S(z)$ is equal to $1$); (3) for any $m\in\mathbb{N}$, there is a poset $S(m)\supset S$ such that $S(m)$ satisfies (1), (2) and $|S(m)\setminus S|=m$.
Keywords: quiver, serial poset, principal poset, minimax equivalence, one-side and two-side sums, minimax sum.
Mots-clés : quadratic Tits form, semichain
@article{ADM_2019_27_2_a4,
     author = {Vitalij M. Bondarenko and Marina V. Styopochkina},
     title = {The classification  of  serial  posets with the non-negative quadratic {Tits} form being principal},
     journal = {Algebra and discrete mathematics},
     pages = {202--211},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/}
}
TY  - JOUR
AU  - Vitalij M. Bondarenko
AU  - Marina V. Styopochkina
TI  - The classification  of  serial  posets with the non-negative quadratic Tits form being principal
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 202
EP  - 211
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/
LA  - en
ID  - ADM_2019_27_2_a4
ER  - 
%0 Journal Article
%A Vitalij M. Bondarenko
%A Marina V. Styopochkina
%T The classification  of  serial  posets with the non-negative quadratic Tits form being principal
%J Algebra and discrete mathematics
%D 2019
%P 202-211
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/
%G en
%F ADM_2019_27_2_a4
Vitalij M. Bondarenko; Marina V. Styopochkina. The classification  of  serial  posets with the non-negative quadratic Tits form being principal. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 202-211. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/

[1] V. M. Bondarenko, “On $(\min, \max)$-equivalence of posets and applications to the Tits forms”, Bull. of the University of Kiev (Ser. Physics Mathematics), 1 (2005), 24–25 | Zbl

[2] V. M. Bondarenko, V. Futorny, T. Klimchuk, V. V. Sergeichuk, K. Yusenko, “Systems of subspaces of a unitary space”, Linear Algebra Appl., 438:5 (2013), 2561–2573 | DOI | Zbl

[3] V. M. Bondarenko, M. V. Styopochkina, “On posets of width two with positive Tits form”, Algebra and Discr. Math., 4:2 (2005), 20–35

[4] V. M. Bondarenko, M. V. Styopochkina, “$(\min, \max)$-equivalence of partially ordered sets and the Tits quadratic form”, Problems of Analysis and Algebra, v. 2, Zb. Pr. Inst. Mat. NAN Ukr., 3, Institute of Mathematics of NAN of Ukraine, Kiev, 2005, 18–58 (in Russian) | Zbl

[5] V. M. Bondarenko, M. V. Styopochkina, “On finite posets of inj-finite type and their Tits forms”, Algebra and Discr. Math., 5:2 (2006), 17–21

[6] V. M. Bondarenko, M. V. Styopochkina, “On the serial posets with positive-definite quadratic Tits form”, Nelin. Kolyv., 9:3 (2006), 320–325 (in Ukrainian) | Zbl

[7] Ukrainian Math. J., 61:5 (2009), 734–746 | DOI | Zbl

[8] N. Bourbaki, Elements de mathematique, Fasc. XXXVII, Groupes et algebres de Lie, Chapitre III: Groupes de Lie, Actualites Sci. Indust., 1349, Hermann, Paris, 1972 | Zbl

[9] P. Donovan, M. R. Freislich, The representation theory of finite graphs and associated algebras, Carleton Math. Lecture Notes, 5, Carleton University, Ottawa, 1973, iii+83 pp. | Zbl

[10] Funct. Anal. Appl., 8:3 (1974), 219–225 | DOI | Zbl

[11] P. Gabriel, “Unzerlegbare Darstellungen”, Manuscripta Math., 6 (1972), 71–103 | DOI | Zbl

[12] G. Marczak, A. Polak, D. Simson, “P-critical integral quadratic forms and positive unit forms: an algorithmic approach”, Linear Algebra Appl., 433:11–12 (2010), 1873–1888 | DOI | Zbl

[13] G. Marczak, D. Simson, K. Zajac, “Algorithmic computation of principal posets using Maple and Python”, Algebra and Discr. Math., 17 (2014), 33–69

[14] G. Marczak, D. Simson, K. Zajac, Tables of one-peak principal posets of Coxeter-Euclidean type $\tilde{E}_8$ http://www.umk.pl/~mgasiorek/pdf/OnePeakPrincipalPosetsE8Tables.pdf

[15] Math. of USSR Izvestiya, 7:4 (1973), 749–792 | DOI | Zbl

[16] J. Soviet Math., 3 (1975), 5–31 | Zbl

[17] D. Simson, Linear representations of partially ordered sets and vector space categories, Gordon and Breach, Philadelphia, 1992, xv+499 pp. | Zbl

[18] A. G. Zavadskij, L. A. Nazarova, “Partially ordered sets of tame type”, Matrix problems, Akad. Nauk Ukrain. SSR, Inst. Mat., 1977, 122–143 (in Russian)