The classification of serial posets with the non-negative quadratic Tits form being principal
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 202-211

Voir la notice de l'article provenant de la source Math-Net.Ru

Using (introduced by the first author) the method of (min, max)-equivalence, we classify all serial principal posets, i.e. the posets $S$ satisfying the following conditions: (1) the quadratic Tits form $q_S(z)\colon\mathbb{Z}^{|S|+1}\to\mathbb{Z}$ of $S$ is non-negative; (2) $\operatorname{Ker}q_S(z):=\{t\mid q_S(t)=0\}$ is an infinite cyclic group (equivalently, the corank of the symmetric matrix of $q_S(z)$ is equal to $1$); (3) for any $m\in\mathbb{N}$, there is a poset $S(m)\supset S$ such that $S(m)$ satisfies (1), (2) and $|S(m)\setminus S|=m$.
Keywords: quiver, serial poset, principal poset, minimax equivalence, one-side and two-side sums, minimax sum.
Mots-clés : quadratic Tits form, semichain
@article{ADM_2019_27_2_a4,
     author = {Vitalij M. Bondarenko and Marina V. Styopochkina},
     title = {The classification  of  serial  posets with the non-negative quadratic {Tits} form being principal},
     journal = {Algebra and discrete mathematics},
     pages = {202--211},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/}
}
TY  - JOUR
AU  - Vitalij M. Bondarenko
AU  - Marina V. Styopochkina
TI  - The classification  of  serial  posets with the non-negative quadratic Tits form being principal
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 202
EP  - 211
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/
LA  - en
ID  - ADM_2019_27_2_a4
ER  - 
%0 Journal Article
%A Vitalij M. Bondarenko
%A Marina V. Styopochkina
%T The classification  of  serial  posets with the non-negative quadratic Tits form being principal
%J Algebra and discrete mathematics
%D 2019
%P 202-211
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/
%G en
%F ADM_2019_27_2_a4
Vitalij M. Bondarenko; Marina V. Styopochkina. The classification  of  serial  posets with the non-negative quadratic Tits form being principal. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 202-211. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/