Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_27_2_a4, author = {Vitalij M. Bondarenko and Marina V. Styopochkina}, title = {The classification of serial posets with the non-negative quadratic {Tits} form being principal}, journal = {Algebra and discrete mathematics}, pages = {202--211}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/} }
TY - JOUR AU - Vitalij M. Bondarenko AU - Marina V. Styopochkina TI - The classification of serial posets with the non-negative quadratic Tits form being principal JO - Algebra and discrete mathematics PY - 2019 SP - 202 EP - 211 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/ LA - en ID - ADM_2019_27_2_a4 ER -
%0 Journal Article %A Vitalij M. Bondarenko %A Marina V. Styopochkina %T The classification of serial posets with the non-negative quadratic Tits form being principal %J Algebra and discrete mathematics %D 2019 %P 202-211 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/ %G en %F ADM_2019_27_2_a4
Vitalij M. Bondarenko; Marina V. Styopochkina. The classification of serial posets with the non-negative quadratic Tits form being principal. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 202-211. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a4/
[1] V. M. Bondarenko, “On $(\min, \max)$-equivalence of posets and applications to the Tits forms”, Bull. of the University of Kiev (Ser. Physics Mathematics), 1 (2005), 24–25 | Zbl
[2] V. M. Bondarenko, V. Futorny, T. Klimchuk, V. V. Sergeichuk, K. Yusenko, “Systems of subspaces of a unitary space”, Linear Algebra Appl., 438:5 (2013), 2561–2573 | DOI | Zbl
[3] V. M. Bondarenko, M. V. Styopochkina, “On posets of width two with positive Tits form”, Algebra and Discr. Math., 4:2 (2005), 20–35
[4] V. M. Bondarenko, M. V. Styopochkina, “$(\min, \max)$-equivalence of partially ordered sets and the Tits quadratic form”, Problems of Analysis and Algebra, v. 2, Zb. Pr. Inst. Mat. NAN Ukr., 3, Institute of Mathematics of NAN of Ukraine, Kiev, 2005, 18–58 (in Russian) | Zbl
[5] V. M. Bondarenko, M. V. Styopochkina, “On finite posets of inj-finite type and their Tits forms”, Algebra and Discr. Math., 5:2 (2006), 17–21
[6] V. M. Bondarenko, M. V. Styopochkina, “On the serial posets with positive-definite quadratic Tits form”, Nelin. Kolyv., 9:3 (2006), 320–325 (in Ukrainian) | Zbl
[7] Ukrainian Math. J., 61:5 (2009), 734–746 | DOI | Zbl
[8] N. Bourbaki, Elements de mathematique, Fasc. XXXVII, Groupes et algebres de Lie, Chapitre III: Groupes de Lie, Actualites Sci. Indust., 1349, Hermann, Paris, 1972 | Zbl
[9] P. Donovan, M. R. Freislich, The representation theory of finite graphs and associated algebras, Carleton Math. Lecture Notes, 5, Carleton University, Ottawa, 1973, iii+83 pp. | Zbl
[10] Funct. Anal. Appl., 8:3 (1974), 219–225 | DOI | Zbl
[11] P. Gabriel, “Unzerlegbare Darstellungen”, Manuscripta Math., 6 (1972), 71–103 | DOI | Zbl
[12] G. Marczak, A. Polak, D. Simson, “P-critical integral quadratic forms and positive unit forms: an algorithmic approach”, Linear Algebra Appl., 433:11–12 (2010), 1873–1888 | DOI | Zbl
[13] G. Marczak, D. Simson, K. Zajac, “Algorithmic computation of principal posets using Maple and Python”, Algebra and Discr. Math., 17 (2014), 33–69
[14] G. Marczak, D. Simson, K. Zajac, Tables of one-peak principal posets of Coxeter-Euclidean type $\tilde{E}_8$ http://www.umk.pl/~mgasiorek/pdf/OnePeakPrincipalPosetsE8Tables.pdf
[15] Math. of USSR Izvestiya, 7:4 (1973), 749–792 | DOI | Zbl
[16] J. Soviet Math., 3 (1975), 5–31 | Zbl
[17] D. Simson, Linear representations of partially ordered sets and vector space categories, Gordon and Breach, Philadelphia, 1992, xv+499 pp. | Zbl
[18] A. G. Zavadskij, L. A. Nazarova, “Partially ordered sets of tame type”, Matrix problems, Akad. Nauk Ukrain. SSR, Inst. Mat., 1977, 122–143 (in Russian)