Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_27_2_a3, author = {M. A. Bhat and T. A. Naikoo and S. Pirzada}, title = {On cospectral signed digraphs}, journal = {Algebra and discrete mathematics}, pages = {191--201}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a3/} }
M. A. Bhat; T. A. Naikoo; S. Pirzada. On cospectral signed digraphs. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 191-201. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a3/
[1] B. D. Acharya, “Spectral criterion for the cycle balance in networks”, J. Graph Theory, 4 (1980), 1–11 | DOI | Zbl
[2] B. D. Acharya, M. K. Gill and G. A. Patwardhan, “Quasicospectral graphs and digraphs”, National Symposium on Mathematical Modelling (M.R.I. Allahabad: July), 1982, 19–20
[3] M. Acharya, “Quasi-cospectrality of graphs and digraphs: A creative review”, J. Comb. Inf. Syst. Sci., 37 (2012), 241–256 | Zbl
[4] M. A. Bhat and S. Pirzada, “On equienergetic signed graphs”, Discrete Appl. Math., 189 (2015), 1–7 | DOI | Zbl
[5] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Academic press, New York, 1980
[6] F. Esser and F. Harary, “Digraphs with real and Gaussian spectra”, Discrete Appl. Math., 2 (1980), 113–124 | DOI | Zbl
[7] R. A. Horn and C. R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013 | Zbl
[8] M. H. McAndrew, “On the product of directed graphs”, Proc. Amer. Math. Soc., 14 (1963), 600–606 | DOI | Zbl
[9] S. Pirzada and M. A. Bhat, “Energy of signed digraphs”, Discrete Appl. Math., 169 (2014), 195–205 | DOI | Zbl
[10] J. Rada, “Bounds for the energy of normal digraph”, Linear Multilinear Algebra, 60 (2012), 323–332 | DOI | Zbl