On cospectral signed digraphs
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 191-201
Voir la notice de l'article provenant de la source Math-Net.Ru
The set of distinct eigenvalues of a signed digraph $S$ together with their respective multiplicities is called its spectrum. Two signed digraphs of same order are said to be cospectral if they have the same spectrum. In this paper, we show the existence of integral, real and Gaussian cospectral signed digraphs. We give a spectral characterization of normal signed digraphs and use it to construct cospectral normal signed digraphs.
Keywords:
spectrum of a signed digraph, cospectral signed digraphs, normal signed digraph.
@article{ADM_2019_27_2_a3,
author = {M. A. Bhat and T. A. Naikoo and S. Pirzada},
title = {On cospectral signed digraphs},
journal = {Algebra and discrete mathematics},
pages = {191--201},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a3/}
}
M. A. Bhat; T. A. Naikoo; S. Pirzada. On cospectral signed digraphs. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 191-201. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a3/