Automorphism groups of superextensions of finite monogenic semigroups
Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 165-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family $\mathcal L$ of subsets of a set $X$ is called linked if $A\cap B\ne\emptyset$ for any $A,B\in\mathcal L$. A linked family $\mathcal M$ of subsets of $X$ is maximal linked if $\mathcal M$ coincides with each linked family $\mathcal L$ on $X$ that contains $\mathcal M$. The superextension $\lambda(X)$ of $X$ consists of all maximal linked families on $X$. Any associative binary operation $*\colon X\times X \to X$ can be extended to an associative binary operation $*\colon \lambda(X)\times\lambda(X)\to\lambda(X)$. In the paper we study automorphisms of the superextensions of finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality $\leq 5$.
Keywords: monogenic semigroup, maximal linked upfamily, superextension
Mots-clés : automorphism group.
@article{ADM_2019_27_2_a2,
     author = {Taras Banakh and Volodymyr Gavrylkiv},
     title = {Automorphism groups of  superextensions of finite monogenic semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {165--190},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a2/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Volodymyr Gavrylkiv
TI  - Automorphism groups of  superextensions of finite monogenic semigroups
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 165
EP  - 190
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a2/
LA  - en
ID  - ADM_2019_27_2_a2
ER  - 
%0 Journal Article
%A Taras Banakh
%A Volodymyr Gavrylkiv
%T Automorphism groups of  superextensions of finite monogenic semigroups
%J Algebra and discrete mathematics
%D 2019
%P 165-190
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a2/
%G en
%F ADM_2019_27_2_a2
Taras Banakh; Volodymyr Gavrylkiv. Automorphism groups of  superextensions of finite monogenic semigroups. Algebra and discrete mathematics, Tome 27 (2019) no. 2, pp. 165-190. http://geodesic.mathdoc.fr/item/ADM_2019_27_2_a2/

[1] T. Banakh, V. Gavrylkiv, “Algebra in superextension of groups, II: cancelativity and centers”, Algebra Discrete Math., 4 (2008), 1–14 | Zbl

[2] T. Banakh, V. Gavrylkiv, “Algebra in superextension of groups: minimal left ideals”, Mat. Stud., 31:2 (2009), 142–148 | Zbl

[3] T. Banakh, V. Gavrylkiv, “Extending binary operations to functor-spaces”, Carpathian Math. Publ., 1:2 (2009), 113–126

[4] T. Banakh, V. Gavrylkiv, “Algebra in the superextensions of twinic groups”, Dissert. Math., 473 (2010), 3–74 | DOI

[5] T. Banakh, V. Gavrylkiv, “Algebra in superextensions of semilattices”, Algebra Discrete Math., 13:1 (2012), 26–42 | Zbl

[6] T. Banakh, V. Gavrylkiv, “Algebra in superextensions of inverse semigroups”, Algebra Discrete Math., 13:2 (2012), 147–168 | Zbl

[7] T. Banakh, V. Gavrylkiv, “Characterizing semigroups with commutative superextensions”, Algebra Discrete Math., 17:2 (2014), 161–192 | Zbl

[8] T. Banakh, V. Gavrylkiv, “On structure of the semigroups of k-linked upfamilies on groups”, Asian-European J. Math., 10:4 (2017), 1750083, 15 pp. | DOI | Zbl

[9] T. Banakh, V. Gavrylkiv, “Automorphism groups of superextensions of groups”, Mat. Stud., 48:2 (2017), 134–142 | DOI | Zbl

[10] T. Banakh, V. Gavrylkiv, O. Nykyforchyn, “Algebra in superextensions of groups, I: zeros and commutativity”, Algebra Discrete Math., 3 (2008), 1–29 | Zbl

[11] A. E. Brouwer, C. F. Mills, W. H. Mills, A. Verbeek, “Counting families of mutually intesecting sets”, Electron. J. Combin., 20:2 (2013), 8, 8 pp. | DOI | Zbl

[12] R. Dedekind, “Über Zerlegungen von Zahlen durch ihre grüssten gemeinsammen Teiler”, Gesammelte Werke, v. 1, Springer, 1897, 103–148

[13] V. Gavrylkiv, “The spaces of inclusion hyperspaces over noncompact spaces”, Mat. Stud., 28:1 (2007), 92–110 | Zbl

[14] V. Gavrylkiv, “Right-topological semigroup operations on inclusion hyperspaces”, Mat. Stud., 29:1 (2008), 18–34 | Zbl

[15] V. Gavrylkiv, “Superextensions of cyclic semigroups”, Carpathian Math. Publ., 5:1 (2013), 36–43 | DOI | Zbl

[16] V. Gavrylkiv, “Semigroups of centered upfamilies on finite monogenic semigroups”, J. Algebra, Number Theory: Adv. Appl., 16:2 (2016), 71–84 | DOI

[17] V. Gavrylkiv, “Semigroups of centered upfamilies on groups”, Lobachevskii J. Math., 38:3 (2017), 420–428 | DOI | Zbl

[18] V. Gavrylkiv, “Superextensions of three-element semigroups”, Carpathian Math. Publ., 9:1 (2017), 28–36 | DOI | Zbl

[19] V. Gavrylkiv, “On the automorphism group of the superextension of a semigroup”, Mat. Stud., 48:1 (2017), 3–13 | DOI | Zbl

[20] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, Berlin–New York, 1998 | Zbl

[21] J. M. Howie, Fundamentals of semigroup theory, The Clarendon Press; Oxford University Press, New York, 1995

[22] J. van Mill, Supercompactness and Wallman spaces, Mathematical Centre Tracts, 85, Amsterdam, 1977 | Zbl

[23] A. Teleiko, M. Zarichnyi, Categorical Topology of Compact Hausdorff Spaces, Mathematical Studies, 5, VNTL, Lviv, 1999 | Zbl

[24] A. Verbeek, “Superextensions of topological spaces”, Mathematical Centre Tracts, 41 (1972), Amsterdam | Zbl