Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_27_1_a9, author = {Zu Yao Teoh and Wen Chean Teh}, title = {A {Ramsey} algebraic study of matrices}, journal = {Algebra and discrete mathematics}, pages = {85--98}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a9/} }
Zu Yao Teoh; Wen Chean Teh. A Ramsey algebraic study of matrices. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 85-98. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a9/
[1] Garrett Birkhoff, John D. Lipson, “Heterogeneous algebras”, J. Comb. Theory, 8:1 (1970), 115–133 | DOI | MR
[2] Timothy J. Carlson, “Some unifying principles in Ramsey theory”, Discrete Math., 68:2 (1988), 117–169 | MR | Zbl
[3] Eric Ellentuck, “A new proof that analytic sets are Ramsey”, J. Symb. Log., 39:01 (1974), 163–165 | DOI | MR
[4] Neil Hindman, “Finite sums from sequences within cells of a partition of $N$”, J. Comb. Theory, Series A, 17 (1974), 1–11 | MR | Zbl
[5] Wen Chean Teh, “Ramsey algebras”, J. Math. Log., 16:2 (2016), 16 pp. | MR
[6] Wen Chean Teh, Ramsey algebras and Ramsey spaces, PhD Thesis, The Ohio State University, 2003
[7] Wen Chean Teh, “Ramsey algebras and formal orderly terms”, Notre Dame J. Form. Log., 58:1 (2017), 115–125 | MR | Zbl
[8] Wen Chean Teh, “Ramsey algebras and strongly reductible ultrafilters”, Bull. Malays. Math. Sci. Soc., 37:4 (2014), 931–938 | MR | Zbl
[9] Wen Chean Teh, “Ramsey algebras and the existence of idempotent ultrafilters”, Arch. Math. Log., 55:3 (2016), 475–491 | MR | Zbl
[10] Zu Yao Teoh, Wen Chean Teh, A Ramsey algebraic study of matrices, arXiv: 1706.00565 [math.LO] | MR
[11] Zu Yao Teoh, Wen Chean Teh, “Heterogeneous Ramsey Algebras and Classification of Ramsey Vector Spaces”, Bull. Malays. Math. Sci. Soc., 41:2 (2018), 1011–1028 | MR | Zbl
[12] Wen Chean Teh, Zu Yao Teoh, “Ramsey Orderly Algebra”, East-West J. Math., 19:1 (2017), 89–102 | MR
[13] Stevo Todorcevic, Introduction to Ramsey spaces, Ann. of Math. Studies, 174, Princeton University Press, Princeton, NJ, 2010 | MR