Classification of homogeneous Fourier matrices
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 75-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group $\mathrm{SL}_2(\mathbb{Z})$. In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual $C$-algebras that satisfy a certain condition. We prove that a homogenous $C$-algebra arising from a Fourier matrix has all the degrees equal to $1$.
Keywords: modular data, fusion rings, $C$-algebras.
Mots-clés : Fourier matrices
@article{ADM_2019_27_1_a8,
     author = {Gurmail Singh},
     title = {Classification of homogeneous {Fourier} matrices},
     journal = {Algebra and discrete mathematics},
     pages = {75--84},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a8/}
}
TY  - JOUR
AU  - Gurmail Singh
TI  - Classification of homogeneous Fourier matrices
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 75
EP  - 84
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a8/
LA  - en
ID  - ADM_2019_27_1_a8
ER  - 
%0 Journal Article
%A Gurmail Singh
%T Classification of homogeneous Fourier matrices
%J Algebra and discrete mathematics
%D 2019
%P 75-84
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a8/
%G en
%F ADM_2019_27_1_a8
Gurmail Singh. Classification of homogeneous Fourier matrices. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a8/

[1] Z. Arad, E. Fisman, and M. Muzychuk, “Generalized table algebras”, Israel J. Math., 114 (1999), 29–60 | DOI | MR | Zbl

[2] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, CA, 1984 | MR | Zbl

[3] Harvey I. Blau, “Table algebras”, European J. Combin., 30:6 (2009), 1426–1455 | DOI | MR | Zbl

[4] Michael Cuntz, “Integral modular data and congruences”, J Algebr Comb., 29 (2009), 357–387 | DOI | MR | Zbl

[5] A. Hanaki and I. Miyamoto, Classification of Small Association Schemes http://math.shinshu-u.ac.jp/~hanaki/as/

[6] D. G. Higman, “Coherent algebras”, Linear Algebra Appl., 93 (1987), 209–239 | DOI | MR | Zbl

[7] Bangteng Xu, “Characters of table algebras and applications to association schemes”, Journal of Combinatorial Theory, Series A, 115 (2008), 1358–1373 | DOI | MR | Zbl