Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_27_1_a8, author = {Gurmail Singh}, title = {Classification of homogeneous {Fourier} matrices}, journal = {Algebra and discrete mathematics}, pages = {75--84}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a8/} }
Gurmail Singh. Classification of homogeneous Fourier matrices. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a8/
[1] Z. Arad, E. Fisman, and M. Muzychuk, “Generalized table algebras”, Israel J. Math., 114 (1999), 29–60 | DOI | MR | Zbl
[2] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, CA, 1984 | MR | Zbl
[3] Harvey I. Blau, “Table algebras”, European J. Combin., 30:6 (2009), 1426–1455 | DOI | MR | Zbl
[4] Michael Cuntz, “Integral modular data and congruences”, J Algebr Comb., 29 (2009), 357–387 | DOI | MR | Zbl
[5] A. Hanaki and I. Miyamoto, Classification of Small Association Schemes http://math.shinshu-u.ac.jp/~hanaki/as/
[6] D. G. Higman, “Coherent algebras”, Linear Algebra Appl., 93 (1987), 209–239 | DOI | MR | Zbl
[7] Bangteng Xu, “Characters of table algebras and applications to association schemes”, Journal of Combinatorial Theory, Series A, 115 (2008), 1358–1373 | DOI | MR | Zbl