Mots-clés : Fourier matrices
@article{ADM_2019_27_1_a8,
author = {Gurmail Singh},
title = {Classification of homogeneous {Fourier} matrices},
journal = {Algebra and discrete mathematics},
pages = {75--84},
year = {2019},
volume = {27},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a8/}
}
Gurmail Singh. Classification of homogeneous Fourier matrices. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a8/
[1] Z. Arad, E. Fisman, and M. Muzychuk, “Generalized table algebras”, Israel J. Math., 114 (1999), 29–60 | DOI | MR | Zbl
[2] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, CA, 1984 | MR | Zbl
[3] Harvey I. Blau, “Table algebras”, European J. Combin., 30:6 (2009), 1426–1455 | DOI | MR | Zbl
[4] Michael Cuntz, “Integral modular data and congruences”, J Algebr Comb., 29 (2009), 357–387 | DOI | MR | Zbl
[5] A. Hanaki and I. Miyamoto, Classification of Small Association Schemes http://math.shinshu-u.ac.jp/~hanaki/as/
[6] D. G. Higman, “Coherent algebras”, Linear Algebra Appl., 93 (1987), 209–239 | DOI | MR | Zbl
[7] Bangteng Xu, “Characters of table algebras and applications to association schemes”, Journal of Combinatorial Theory, Series A, 115 (2008), 1358–1373 | DOI | MR | Zbl