Generalized classes of suborbital graphs for the congruence subgroups of the modular group
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 20-36

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be the modular group. We extend a nontrivial $\Gamma$-invariant equivalence relation on $\widehat{\mathbb{Q}}$ to a general relation by replacing the group $\Gamma_0(n)$ by $\Gamma_K(n)$, and determine the suborbital graph $\mathcal{F}^K_{u,n}$, an extended concept of the graph $\mathcal{F}_{u,n}$. We investigate several properties of the graph, such as, connectivity, forest conditions, and the relation between circuits of the graph and elliptic elements of the group $\Gamma_K(n)$. We also provide the discussion on suborbital graphs for conjugate subgroups of $\Gamma$.
Keywords: modular group, congruence subgroups, suborbital graphs.
@article{ADM_2019_27_1_a3,
     author = {Pradthana Jaipong and Wanchai Tapanyo},
     title = {Generalized classes of suborbital graphs for the congruence subgroups of the modular group},
     journal = {Algebra and discrete mathematics},
     pages = {20--36},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/}
}
TY  - JOUR
AU  - Pradthana Jaipong
AU  - Wanchai Tapanyo
TI  - Generalized classes of suborbital graphs for the congruence subgroups of the modular group
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 20
EP  - 36
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/
LA  - en
ID  - ADM_2019_27_1_a3
ER  - 
%0 Journal Article
%A Pradthana Jaipong
%A Wanchai Tapanyo
%T Generalized classes of suborbital graphs for the congruence subgroups of the modular group
%J Algebra and discrete mathematics
%D 2019
%P 20-36
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/
%G en
%F ADM_2019_27_1_a3
Pradthana Jaipong; Wanchai Tapanyo. Generalized classes of suborbital graphs for the congruence subgroups of the modular group. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 20-36. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/