Generalized classes of suborbital graphs for the congruence subgroups of the modular group
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 20-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be the modular group. We extend a nontrivial $\Gamma$-invariant equivalence relation on $\widehat{\mathbb{Q}}$ to a general relation by replacing the group $\Gamma_0(n)$ by $\Gamma_K(n)$, and determine the suborbital graph $\mathcal{F}^K_{u,n}$, an extended concept of the graph $\mathcal{F}_{u,n}$. We investigate several properties of the graph, such as, connectivity, forest conditions, and the relation between circuits of the graph and elliptic elements of the group $\Gamma_K(n)$. We also provide the discussion on suborbital graphs for conjugate subgroups of $\Gamma$.
Keywords: modular group, congruence subgroups, suborbital graphs.
@article{ADM_2019_27_1_a3,
     author = {Pradthana Jaipong and Wanchai Tapanyo},
     title = {Generalized classes of suborbital graphs for the congruence subgroups of the modular group},
     journal = {Algebra and discrete mathematics},
     pages = {20--36},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/}
}
TY  - JOUR
AU  - Pradthana Jaipong
AU  - Wanchai Tapanyo
TI  - Generalized classes of suborbital graphs for the congruence subgroups of the modular group
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 20
EP  - 36
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/
LA  - en
ID  - ADM_2019_27_1_a3
ER  - 
%0 Journal Article
%A Pradthana Jaipong
%A Wanchai Tapanyo
%T Generalized classes of suborbital graphs for the congruence subgroups of the modular group
%J Algebra and discrete mathematics
%D 2019
%P 20-36
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/
%G en
%F ADM_2019_27_1_a3
Pradthana Jaipong; Wanchai Tapanyo. Generalized classes of suborbital graphs for the congruence subgroups of the modular group. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 20-36. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/

[1] M. Akbas, “On suborbital graphs for the modular group”, Bull. London Math. Soc., 33:6 (2001), 647–652 | DOI | MR | Zbl

[2] Mehmet Akbaş, Tuncay Kör, Yavuz Kesicioğlu, “Disconnectedness of the subgraph $F^3$ for the group $\Gamma^3$”, J. Inequal. Appl., 2013:283 (2013) | MR

[3] Murat Beşenk, Bahad{\i}r Ö. Güler, Ali H. De{ğ}er, Yavuz Kesicioğlu, “Circuit lengths of graphs for the Picard group”, J. Inequal. Appl., 2013:106 (2013) | MR

[4] Ali H. De{ğ}er, Murat Be{ş}enk, Bahad{\i}r Ö. Güler, “On suborbital graphs and related continued fractions”, Appl. Math. Comput., 218:3 (2011), 746–750 | MR | Zbl

[5] Bahadir O. Guler, Serkan Kader, Murat Besenk, “On suborbital graphs of the congruence subgroup $\Gamma_0(N)$”, Int. J. Comput. Math. Sci., 2:3 (2008), 153–156 | MR

[6] Bahad{\i}r Ö. Güler, Murat Beşenk, Yavuz Kesicioğlu, Ali Hikmet Değer, “Suborbital graphs for the group $\Gamma^2$”, Hacettepe Journal of Mathematics and Statistics, 44:5 (2015), 1033–1044 | MR | Zbl

[7] Bahad{\i}r Ö. Güler, Serkan Kader, “On the action of $\Gamma^0(N)$ on $\widehat{\mathbb Q}$”, Note Mat., 30:2 (2010), 141–148 | MR

[8] G. A. Jones, D. Singerman, K. Wicks, “The modular group and generalized Farey graphs”, Groups (St. Andrews 1989), v. 2, London Math. Soc. Lecture Note, 160, Cambridge Univ. Press, Cambridge, 1991, 316–338 | MR

[9] Serkan Kader, Bahad{\i}r Ö. Güler, “On suborbital graphs for the extended modular group $\widehat\Gamma$”, Graphs Combin., 29:6 (2013), 1813–1825 | DOI | MR | Zbl

[10] I. N. Kamuti, E. B. Inyangala, J. K. Rimberia, “Action of $\Gamma_\infty$ on $\mathbb{Z}$ and the corresponding suborbital graphs”, Int. Math. Forum, 7:30 (2012), 1483–1490 | MR | Zbl

[11] Yavuz Kesicioğlu, Mehmet Akbaş, Murat Beşenk, “Connectedness of a suborbital graph for congruence subgroups”, J. Inequal. Appl., 2013:117 (2013) | MR

[12] Refik Keskin, “On suborbital graphs for some Hecke groups”, Discrete Math., 234 (2001), 53–64 | DOI | MR | Zbl

[13] R. Sarma, S. Kushwaha, R. Krishnan, “Continued fractions arising from $\mathcal{F}_{1,2}$”, J. Number Theory, 154 (2015), 179–200 | DOI | MR | Zbl

[14] Charles C. Sims, “Graphs and finite permutation groups”, Mathematische Zeitschrift, 95:1 (1967), 76–86 | DOI | MR | Zbl