Generalized classes of suborbital graphs for the congruence subgroups of the modular group
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 20-36
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma$ be the modular group. We extend a nontrivial $\Gamma$-invariant equivalence relation on $\widehat{\mathbb{Q}}$ to a general relation by replacing the group $\Gamma_0(n)$ by $\Gamma_K(n)$, and determine the suborbital graph $\mathcal{F}^K_{u,n}$, an extended concept of the graph $\mathcal{F}_{u,n}$. We investigate several properties of the graph, such as, connectivity, forest conditions, and the relation between circuits of the graph and elliptic elements of the group $\Gamma_K(n)$. We also provide the discussion on suborbital graphs for conjugate subgroups of $\Gamma$.
Keywords:
modular group, congruence subgroups, suborbital graphs.
@article{ADM_2019_27_1_a3,
author = {Pradthana Jaipong and Wanchai Tapanyo},
title = {Generalized classes of suborbital graphs for the congruence subgroups of the modular group},
journal = {Algebra and discrete mathematics},
pages = {20--36},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/}
}
TY - JOUR AU - Pradthana Jaipong AU - Wanchai Tapanyo TI - Generalized classes of suborbital graphs for the congruence subgroups of the modular group JO - Algebra and discrete mathematics PY - 2019 SP - 20 EP - 36 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/ LA - en ID - ADM_2019_27_1_a3 ER -
%0 Journal Article %A Pradthana Jaipong %A Wanchai Tapanyo %T Generalized classes of suborbital graphs for the congruence subgroups of the modular group %J Algebra and discrete mathematics %D 2019 %P 20-36 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/ %G en %F ADM_2019_27_1_a3
Pradthana Jaipong; Wanchai Tapanyo. Generalized classes of suborbital graphs for the congruence subgroups of the modular group. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 20-36. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a3/