Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 117-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The rings we consider in this article are commutative with identity $1\neq 0$ and are not fields. Let $R$ be a ring. We denote the collection of all proper ideals of $R$ by $\mathbb{I}(R)$ and the collection $\mathbb{I}(R)\setminus \{(0)\}$ by $\mathbb{I}(R)^{*}$. Let $H(R)$ be the graph associated with $R$ whose vertex set is $\mathbb{I}(R)^{*}$ and distinct vertices $I, J$ are adjacent if and only if $IJ\neq (0)$. The aim of this article is to discuss the planarity of $H(R)$ in the case when $R$ is quasilocal.
Keywords: quasilocal ring, local Artinian ring, special principal ideal ring, planar graph.
@article{ADM_2019_27_1_a11,
     author = {P. Vadhel and S. Visweswaran},
     title = {Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative {ring~II,} {Quasilocal} {Case}},
     journal = {Algebra and discrete mathematics},
     pages = {117--143},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/}
}
TY  - JOUR
AU  - P. Vadhel
AU  - S. Visweswaran
TI  - Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 117
EP  - 143
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/
LA  - en
ID  - ADM_2019_27_1_a11
ER  - 
%0 Journal Article
%A P. Vadhel
%A S. Visweswaran
%T Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case
%J Algebra and discrete mathematics
%D 2019
%P 117-143
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/
%G en
%F ADM_2019_27_1_a11
P. Vadhel; S. Visweswaran. Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 117-143. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/

[1] S. Akbari, R. Nikandish and M. J. Nikmehr, “Some results on the intersection graphs of ideals of rings”, J. Algebra Appl., 12:4 (2013), 1250200, 13 pp. | DOI | MR | Zbl

[2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Massachusetts, 1969 | MR | Zbl

[3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer, 2000 | DOI | MR | Zbl

[4] M. Behboodi and Z. Rakeei, “The annihilating-ideal graph of commutative rings I”, J. Algebra Appl., 10:4 (2011), 727–739 | DOI | MR | Zbl

[5] R. Belshoff and J. Chapman, “Planar zero-divisor graphs”, J. Algebra, 316 (2007), 471–480 | DOI | MR | Zbl

[6] I. Chakrabarthy, S. Ghosh, T. K. Mukherjee and M. K. Sen, “Intersection graphs of ideals of rings”, Electronic Notes in Disc. Mathematics, 23 (2005), 23–32 | DOI | MR

[7] B. Corbas and G. D. Williams, “Rings of order $p^{5}$ I, Nonlocal rings”, J. Algebra, 231:2 (2000), 677–690 | DOI | MR | Zbl

[8] B. Corbas and G. D. Williams, “Rings of order $p^{5}$ II, Local rings”, J. Algebra, 231:2 (2000), 691–704 | DOI | MR | Zbl

[9] N. Deo, Graph theory with applications to Engineering and Computer science, Prentice-Hall of India, New Delhi, 1994 | MR

[10] S. H. Jaffari and N. Jaffari Rad, “Planarity of intersection graph of ideals of rings”, Int. Electronic J. Algebra, 8 (2010), 161–166 | MR

[11] Z. S. Pucanovic' and Z. Z. Petrovic', “Toroidality of intersection graphs of ideals of commutative rings”, Graphs and Combinatorics, 30 (2014), 707–716 | DOI | MR | Zbl

[12] P. Vadhel and S. Visweswaran, “Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case”, Algebra Discrete Math., 26 (2018), 130–143 | MR | Zbl

[13] S. Visweswaran and Jaydeep Parejiya, “Annihilating-ideal graphs with independence number at most four”, Cogent Math., 3:1 (2016), 1155858, 32 pp. | DOI | MR | Zbl

[14] S. Visweswaran and Pravin Vadhel, “Some results on a spanning subgraph of the intersection graph of ideals of a commutative ring”, Mathematics Today, 31 (2015), 1–20