Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_27_1_a11, author = {P. Vadhel and S. Visweswaran}, title = {Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative {ring~II,} {Quasilocal} {Case}}, journal = {Algebra and discrete mathematics}, pages = {117--143}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/} }
TY - JOUR AU - P. Vadhel AU - S. Visweswaran TI - Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case JO - Algebra and discrete mathematics PY - 2019 SP - 117 EP - 143 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/ LA - en ID - ADM_2019_27_1_a11 ER -
%0 Journal Article %A P. Vadhel %A S. Visweswaran %T Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case %J Algebra and discrete mathematics %D 2019 %P 117-143 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/ %G en %F ADM_2019_27_1_a11
P. Vadhel; S. Visweswaran. Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 117-143. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/
[1] S. Akbari, R. Nikandish and M. J. Nikmehr, “Some results on the intersection graphs of ideals of rings”, J. Algebra Appl., 12:4 (2013), 1250200, 13 pp. | DOI | MR | Zbl
[2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Massachusetts, 1969 | MR | Zbl
[3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer, 2000 | DOI | MR | Zbl
[4] M. Behboodi and Z. Rakeei, “The annihilating-ideal graph of commutative rings I”, J. Algebra Appl., 10:4 (2011), 727–739 | DOI | MR | Zbl
[5] R. Belshoff and J. Chapman, “Planar zero-divisor graphs”, J. Algebra, 316 (2007), 471–480 | DOI | MR | Zbl
[6] I. Chakrabarthy, S. Ghosh, T. K. Mukherjee and M. K. Sen, “Intersection graphs of ideals of rings”, Electronic Notes in Disc. Mathematics, 23 (2005), 23–32 | DOI | MR
[7] B. Corbas and G. D. Williams, “Rings of order $p^{5}$ I, Nonlocal rings”, J. Algebra, 231:2 (2000), 677–690 | DOI | MR | Zbl
[8] B. Corbas and G. D. Williams, “Rings of order $p^{5}$ II, Local rings”, J. Algebra, 231:2 (2000), 691–704 | DOI | MR | Zbl
[9] N. Deo, Graph theory with applications to Engineering and Computer science, Prentice-Hall of India, New Delhi, 1994 | MR
[10] S. H. Jaffari and N. Jaffari Rad, “Planarity of intersection graph of ideals of rings”, Int. Electronic J. Algebra, 8 (2010), 161–166 | MR
[11] Z. S. Pucanovic' and Z. Z. Petrovic', “Toroidality of intersection graphs of ideals of commutative rings”, Graphs and Combinatorics, 30 (2014), 707–716 | DOI | MR | Zbl
[12] P. Vadhel and S. Visweswaran, “Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case”, Algebra Discrete Math., 26 (2018), 130–143 | MR | Zbl
[13] S. Visweswaran and Jaydeep Parejiya, “Annihilating-ideal graphs with independence number at most four”, Cogent Math., 3:1 (2016), 1155858, 32 pp. | DOI | MR | Zbl
[14] S. Visweswaran and Pravin Vadhel, “Some results on a spanning subgraph of the intersection graph of ideals of a commutative ring”, Mathematics Today, 31 (2015), 1–20