Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 117-143
Voir la notice de l'article provenant de la source Math-Net.Ru
The rings we consider in this article are commutative with identity $1\neq 0$ and are not fields. Let $R$ be a ring. We denote the collection of all proper ideals of $R$ by $\mathbb{I}(R)$ and the collection $\mathbb{I}(R)\setminus \{(0)\}$ by $\mathbb{I}(R)^{*}$. Let $H(R)$ be the graph associated with $R$ whose vertex set is $\mathbb{I}(R)^{*}$ and distinct vertices $I, J$ are adjacent if and only if $IJ\neq (0)$. The aim of this article is to discuss the planarity of $H(R)$ in the case when $R$ is quasilocal.
Keywords:
quasilocal ring, local Artinian ring, special principal ideal ring, planar graph.
@article{ADM_2019_27_1_a11,
author = {P. Vadhel and S. Visweswaran},
title = {Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative {ring~II,} {Quasilocal} {Case}},
journal = {Algebra and discrete mathematics},
pages = {117--143},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/}
}
TY - JOUR AU - P. Vadhel AU - S. Visweswaran TI - Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case JO - Algebra and discrete mathematics PY - 2019 SP - 117 EP - 143 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/ LA - en ID - ADM_2019_27_1_a11 ER -
%0 Journal Article %A P. Vadhel %A S. Visweswaran %T Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case %J Algebra and discrete mathematics %D 2019 %P 117-143 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/ %G en %F ADM_2019_27_1_a11
P. Vadhel; S. Visweswaran. Planarity of a spanning subgraph of~the~intersection graph of ideals of~a~commutative ring~II, Quasilocal Case. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 117-143. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a11/