On hereditary reducibility of 2-monomial matrices over commutative rings
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 1-11
Voir la notice de l'article provenant de la source Math-Net.Ru
A 2-monomial matrix over a commutative ring $R$ is by definition any matrix of the form $M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k0\\0{n-k}\end{smallmatrix}\right)$, $0$, where $t$ is a non-invertible element of $R$, $\Phi$ the companion matrix to $\lambda^n-1$ and $I_k$ the identity $k\times k$-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility.
Keywords:
commutative ring, Jacobson radical, hereditary reducible matrix, similarity, linear operator, free module.
Mots-clés : 2-monomial matrix
Mots-clés : 2-monomial matrix
@article{ADM_2019_27_1_a1,
author = {Vitaliy M. Bondarenko and Joseph Gildea and Alexander A. Tylyshchak and Natalia V. Yurchenko},
title = {On hereditary reducibility of 2-monomial matrices over commutative rings},
journal = {Algebra and discrete mathematics},
pages = {1--11},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a1/}
}
TY - JOUR AU - Vitaliy M. Bondarenko AU - Joseph Gildea AU - Alexander A. Tylyshchak AU - Natalia V. Yurchenko TI - On hereditary reducibility of 2-monomial matrices over commutative rings JO - Algebra and discrete mathematics PY - 2019 SP - 1 EP - 11 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a1/ LA - en ID - ADM_2019_27_1_a1 ER -
%0 Journal Article %A Vitaliy M. Bondarenko %A Joseph Gildea %A Alexander A. Tylyshchak %A Natalia V. Yurchenko %T On hereditary reducibility of 2-monomial matrices over commutative rings %J Algebra and discrete mathematics %D 2019 %P 1-11 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a1/ %G en %F ADM_2019_27_1_a1
Vitaliy M. Bondarenko; Joseph Gildea; Alexander A. Tylyshchak; Natalia V. Yurchenko. On hereditary reducibility of 2-monomial matrices over commutative rings. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a1/