On hereditary reducibility of 2-monomial matrices over commutative rings
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

A 2-monomial matrix over a commutative ring $R$ is by definition any matrix of the form $M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k0\\0{n-k}\end{smallmatrix}\right)$, $0$, where $t$ is a non-invertible element of $R$, $\Phi$ the companion matrix to $\lambda^n-1$ and $I_k$ the identity $k\times k$-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility.
Keywords: commutative ring, Jacobson radical, hereditary reducible matrix, similarity, linear operator, free module.
Mots-clés : 2-monomial matrix
@article{ADM_2019_27_1_a1,
     author = {Vitaliy M. Bondarenko and Joseph Gildea and Alexander A. Tylyshchak and Natalia V. Yurchenko},
     title = {On hereditary reducibility of 2-monomial matrices over commutative rings},
     journal = {Algebra and discrete mathematics},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a1/}
}
TY  - JOUR
AU  - Vitaliy M. Bondarenko
AU  - Joseph Gildea
AU  - Alexander A. Tylyshchak
AU  - Natalia V. Yurchenko
TI  - On hereditary reducibility of 2-monomial matrices over commutative rings
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 1
EP  - 11
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a1/
LA  - en
ID  - ADM_2019_27_1_a1
ER  - 
%0 Journal Article
%A Vitaliy M. Bondarenko
%A Joseph Gildea
%A Alexander A. Tylyshchak
%A Natalia V. Yurchenko
%T On hereditary reducibility of 2-monomial matrices over commutative rings
%J Algebra and discrete mathematics
%D 2019
%P 1-11
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a1/
%G en
%F ADM_2019_27_1_a1
Vitaliy M. Bondarenko; Joseph Gildea; Alexander A. Tylyshchak; Natalia V. Yurchenko. On hereditary reducibility of 2-monomial matrices over commutative rings. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/ADM_2019_27_1_a1/

[1] P. M. Gudivok, O. A. Tylyshchak, “On irreducible modular representations of finite $p$-groups over commutative local rings”, Nauk. Visn. Uzhgorod. Univ. Ser. Math., 3 (1998), 78–83 (in Ukrainian) | MR | Zbl

[2] V. M. Bondarenko, M. Yu. Bortos, R. F. Dinis, O. A. Tylyshchak, “Reducibility and irreducibility of monomial matrices over commutative rings”, Algebra Discrete Math., 16:2 (2013), 171–187 | MR | Zbl

[3] V. M. Bondarenko, M. Yu. Bortos, “On $(*,2)$-reducible monomial matrices over commutative rings”, Nauk. Visn. Uzhgorod Univ. Ser. Math. Inform., 29:2 (2016), 22–30 (Ukrainian)

[4] V. M. Bondarenko, M. Yu. Bortos, R. F. Dinis, O. A. Tylyshchak, “Indecomposable and irreducible $t$-monomial matrices over commutative rings”, Algebra Discrete Math., 22:1 (2016), 11–20 | MR | Zbl

[5] V. M. Bondarenko, M. Yu. Bortos, “Sufficient conditions of reducibility in the category of monomial matrices over a commutative local ring”, Nauk. Visn. Uzhgorod Univ. Ser. Math. Inform., 30:1 (2017), 11–24 (Ukrainian) | MR

[6] V. M. Bondarenko, M. Yu. Bortos, “Indecomposable and isomorphic objects in the category of monomial matrices over a local ring”, Ukr. Math. J., 69:7 (2017), 889–904 | DOI | MR | Zbl