A formula for the number of weak endomorphisms on paths
Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 270-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

A weak endomorphisms of a graph is a mapping on the vertex set of the graph which preserves or contracts edges. In this paper we provide a formula to determine the cardinalities of weak endomorphism monoids of finite undirected paths.
Keywords: path, weak endomorphisms, three-dimensional square lattices.
@article{ADM_2018_26_2_a5,
     author = {Ulrich Knauer and Nirutt Pipattanajinda},
     title = {A formula for the number of weak endomorphisms on paths},
     journal = {Algebra and discrete mathematics},
     pages = {270--279},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a5/}
}
TY  - JOUR
AU  - Ulrich Knauer
AU  - Nirutt Pipattanajinda
TI  - A formula for the number of weak endomorphisms on paths
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 270
EP  - 279
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a5/
LA  - en
ID  - ADM_2018_26_2_a5
ER  - 
%0 Journal Article
%A Ulrich Knauer
%A Nirutt Pipattanajinda
%T A formula for the number of weak endomorphisms on paths
%J Algebra and discrete mathematics
%D 2018
%P 270-279
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a5/
%G en
%F ADM_2018_26_2_a5
Ulrich Knauer; Nirutt Pipattanajinda. A formula for the number of weak endomorphisms on paths. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 270-279. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a5/

[1] Sr. Arworn, “An algorithm for the numbers of endomorphisms on paths”, Discrete Mathematics, 309 (2009), 94–103 | DOI | MR | Zbl

[2] Sr. Arworn, Y. Kim, “The number of path homomorphisms by the generalized catalan number”, Advances and Applications in Discrete Mathematics, 9:2 (2012), 93–105 | MR | Zbl

[3] W. Imrich, S. Klavžar, Product Graphs, Wiley, 2000 | MR | Zbl

[4] U. Knauer, Algebraic Graph Theory. Morphisms, monoids and matrices, De Gruyter, Berlin–Boston, 2011 | MR | Zbl

[5] P. Sirisathianwatthana, N. Pipattanajinda, “Finding the number of cycle egamorphisms”, Thai Journal of Mathematics, Special Issue (Annual Meeting in Mathematics 2010), 1–9 | MR | Zbl