Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_26_2_a5, author = {Ulrich Knauer and Nirutt Pipattanajinda}, title = {A formula for the number of weak endomorphisms on paths}, journal = {Algebra and discrete mathematics}, pages = {270--279}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a5/} }
TY - JOUR AU - Ulrich Knauer AU - Nirutt Pipattanajinda TI - A formula for the number of weak endomorphisms on paths JO - Algebra and discrete mathematics PY - 2018 SP - 270 EP - 279 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a5/ LA - en ID - ADM_2018_26_2_a5 ER -
Ulrich Knauer; Nirutt Pipattanajinda. A formula for the number of weak endomorphisms on paths. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 270-279. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a5/
[1] Sr. Arworn, “An algorithm for the numbers of endomorphisms on paths”, Discrete Mathematics, 309 (2009), 94–103 | DOI | MR | Zbl
[2] Sr. Arworn, Y. Kim, “The number of path homomorphisms by the generalized catalan number”, Advances and Applications in Discrete Mathematics, 9:2 (2012), 93–105 | MR | Zbl
[3] W. Imrich, S. Klavžar, Product Graphs, Wiley, 2000 | MR | Zbl
[4] U. Knauer, Algebraic Graph Theory. Morphisms, monoids and matrices, De Gruyter, Berlin–Boston, 2011 | MR | Zbl
[5] P. Sirisathianwatthana, N. Pipattanajinda, “Finding the number of cycle egamorphisms”, Thai Journal of Mathematics, Special Issue (Annual Meeting in Mathematics 2010), 1–9 | MR | Zbl