On unicyclic graphs of metric dimension~2 with vertices of degree~4
Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 256-269

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if $G$ is a unicyclic graph with metric dimension $2$ and $\{a,b\}$ is a metric basis of $G$ then the degree of any vertex $v$ of $G$ is at most $4$ and degrees of both $a$ and $b$ are at most $2$. The constructions of unispider and semiunispider graphs and their knittings are introduced. Using these constructions all unicyclic graphs of metric dimension $2$ with vertices of degree $4$ are characterized.
Keywords: graph, metric dimension
Mots-clés : distance, unicyclic graph.
@article{ADM_2018_26_2_a4,
     author = {M. Dudenko and B. Oliynyk},
     title = {On unicyclic graphs of metric dimension~2 with vertices of degree~4},
     journal = {Algebra and discrete mathematics},
     pages = {256--269},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a4/}
}
TY  - JOUR
AU  - M. Dudenko
AU  - B. Oliynyk
TI  - On unicyclic graphs of metric dimension~2 with vertices of degree~4
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 256
EP  - 269
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a4/
LA  - en
ID  - ADM_2018_26_2_a4
ER  - 
%0 Journal Article
%A M. Dudenko
%A B. Oliynyk
%T On unicyclic graphs of metric dimension~2 with vertices of degree~4
%J Algebra and discrete mathematics
%D 2018
%P 256-269
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a4/
%G en
%F ADM_2018_26_2_a4
M. Dudenko; B. Oliynyk. On unicyclic graphs of metric dimension~2 with vertices of degree~4. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 256-269. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a4/