On a~graph isomorphic to its intersection graph: self-graphoidal graphs
Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 247-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is called a graphoidal graph if there exists a graph $H$ and a graphoidal cover $\psi$ of $H$ such that $G\cong\Omega(H,\psi)$. Then the graph $G$ is said to be self-graphoidal if it is isomorphic to one of its graphoidal graphs. In this paper, we have examined the existence of a few self-graphoidal graphs from path length sequence of a graphoidal cover and obtained new results on self-graphoidal graphs.
Keywords: graphoidal cover, graphoidal covering number, self-graphoidal graph.
Mots-clés : graphoidal graph
@article{ADM_2018_26_2_a3,
     author = {P. K. Das and K. R. Singh},
     title = {On a~graph isomorphic to its intersection graph: self-graphoidal graphs},
     journal = {Algebra and discrete mathematics},
     pages = {247--255},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a3/}
}
TY  - JOUR
AU  - P. K. Das
AU  - K. R. Singh
TI  - On a~graph isomorphic to its intersection graph: self-graphoidal graphs
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 247
EP  - 255
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a3/
LA  - en
ID  - ADM_2018_26_2_a3
ER  - 
%0 Journal Article
%A P. K. Das
%A K. R. Singh
%T On a~graph isomorphic to its intersection graph: self-graphoidal graphs
%J Algebra and discrete mathematics
%D 2018
%P 247-255
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a3/
%G en
%F ADM_2018_26_2_a3
P. K. Das; K. R. Singh. On a~graph isomorphic to its intersection graph: self-graphoidal graphs. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 247-255. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a3/

[1] B. D. Acharya, “Further results on the graphoidal covering number of a graph”, Graph Theory Newsletter, 17:4 (1988), 1

[2] B. D. Acharya, E.Sampathkumar, “Graphoidal covers and graphoidal covering number of a graph”, Indian J. Pure Appl. Math., 18:10 (1987), 882–890 | MR | Zbl

[3] C. Pakkiam, S. Arumugam, “On the graphoidal covering number of a graph”, Indian J. Pure Appl. Math., 20 (1989), 330–333 | MR | Zbl

[4] C. Kingsford, G. Marçais, A synthesis for exactly 3-edge-connected graphs, arXiv: 0905.1053v1

[5] E. Marczewski, “Sur deux propriétés des classes d'ensembles”, Fund. Math., 33 (1945), 303–307 | DOI | MR | Zbl

[6] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969 | MR | Zbl

[7] J. L. Gross, J. Yellen, Graph theory and its applications, ed. 2nd edition, Chapman Hall/CRC, New York, 2006 | MR | Zbl

[8] K. R. Singh, P. K. Das, “On self-graphoidal graphs”, Thai Journal of Mathematics, 8:3 (2010), 575–579 | MR | Zbl

[9] L. W. Beineke, “Derived graphs and digraphs”, Beitläge zur Graphentheorie, eds. H. Sachs, V. Voss and H. Walther, Teubner, Leipzig, 1968, 17–33 | MR

[10] S. Arumugam, B. D. Acharya, E. Sampathkumar, “Graphoidal covers of a graph: a creative review”, Proc. National Workshop on Graph Theory and its applications (Manonmaniam Sundaranar University, Tirunelveli), Tata McGraw-Hill, New Delhi, 1997, 1–28 | MR

[11] W. T. Tutte, Graph Theory, Cambridge University Press, 2001 | MR | Zbl