Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_26_2_a2, author = {J\'er\'emie Brieussel and Antoine Gournay}, title = {Connectedness of spheres in {Cayley} graphs}, journal = {Algebra and discrete mathematics}, pages = {190--246}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a2/} }
Jérémie Brieussel; Antoine Gournay. Connectedness of spheres in Cayley graphs. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 190-246. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a2/
[1] E. Babson and I. Benjamini, “Cut sets and normed cohomology with applications to percolation”, Proc. Amer. Math. Soc., 127 (1999), 589–597 | DOI | MR | Zbl
[2] G. Baumslag and R. Strebel, “Some finitely generated, infinitely related metabelian groups with trivial multiplicator”, J. Algebra, 40:1 (1976), 46–62 | DOI | MR | Zbl
[3] L. Bartholdi and W. Woess, “Spectral computations on lamplighter groups and Diestel-Leader graphs”, J. Fourier Anal. Appl., 11:2 (2005), 175–202 | DOI | MR | Zbl
[4] Algebra and Logic, 36:3 (1997), 155–163 | DOI | MR
[5] J. Cannon, “Almost convex groups”, Geom. Dedicata, 22 (1987), 197–210 | DOI | MR | Zbl
[6] D. J. Collins, M. Edjvet and C. P. Gill, “Growth series of the group $\langle x,y \mid x^{-1}yx=y^\ell \rangle$”, Arch. Math., 62 (1994), 1–11 | DOI | MR | Zbl
[7] S. Cleary and T. Riley, “A finitely presented group with unbounded dead-end depth”, Proc. Amer. Math. Soc., 134:2 (2006), 343–349 ; With erratum Proc. Amer. Math. Soc., 136 (2008), 2641–2645 | DOI | MR | Zbl | DOI | MR | Zbl
[8] S. Cleary and J. Taback, “Dead end words in lamplighter groups and other wreath products”, Q. J. Math., 56:2 (2005), 165–178 | DOI | MR | Zbl
[9] C. Drutu, S. Mozes and M. Sapir, “Divergence in lattices in semisimple Lie groups and graphs of groups”, Trans. A.M.S., 362:5 (2010), 2451–2505 | DOI | MR | Zbl
[10] M. Duchin, S. Lelièvre and C. Mooney, “The geometry of spheres in free Abelian groups”, Geom. Ded., 161:1 (2012), 169–187 | DOI | MR | Zbl
[11] M. Duchin, S. Lelièvre and C. Mooney, “Statistical hyperbolicity in groups”, Algebr. Geom. Topol., 12:1 (2012), 1–18 | DOI | MR | Zbl
[12] M. Duchin, S. Lelièvre and C. Mooney, “The sprawl conjecture for convex bodies”, Exper. Math., 22:2 (2013), 113–122 | DOI | MR | Zbl
[13] A. Erschler, “On isoperimetric profiles of finitely generated groups”, Geom. Ded., 100 (2003), 157–171 | DOI | MR | Zbl
[14] L. Funar, M. Giannoudovardi and D. Otera, On groups with linear sci growth, to appear in Fund. Math., 2013 ; arXiv: 1312.0802 | MR
[15] G. Georgakopoulos, Group-walk random graphs, 2015, arXiv: ; To appear in Groups, Graphs, and Random Walks, LMS Lecture Note Series, eds. T. Ceccherini-Silberstein, M. Salvatori, and E. Sava-Huss, 2016 1506.02697 | MR | MR
[16] S. Gersten, “Quadratic divergence in geodesics in $CAT(0)$-spaces”, Geom. Funct. Anal., 4:1 (1994), 37–51 | DOI | MR | Zbl
[17] S. Gersten, “Divergence in 3-manifold groups”, Geom. Funct. Anal., 4:6 (1994), 633–647 | DOI | MR | Zbl
[18] A. Gournay, “A remark on the connectedness of spheres in Cayley graphs”, C. R. Math. Acad. Sci. Paris, 352:7–8 (2014), 573–576 | DOI | MR | Zbl
[19] R. Grigorchuk and A. Zuk, “The lamplighter group as a group generated by a 2-state automaton and its spectrum”, Geom. Ded., 87 (2001), 209–244 | DOI | MR | Zbl
[20] D. L. Johnson, “Rational growth of wreath products”, Groups St Andrews 1989, v. 2, 309–315 | MR | Zbl
[21] J. Kellerhals, N. Monod and M. Rørdam, “Non-supramenable groups acting on locally compact spaces”, Doc. Math., 18 (2013), 1597–1626 | MR | Zbl
[22] V. Kaimanovich and A. Vershik, “Random walks on discrete groups: boundary and entropy”, Ann. Probab., 11:3 (1983), 457–490 | DOI | MR | Zbl
[23] J. Lehnert, “Some remarks on depth of dead-ends in groups”, Internat. J. Algebra Comput., 19:4 (2009), 585–594 | DOI | MR | Zbl
[24] R. Lyons, R. Pemantle and Y. Peres, “Random walks on the lamplighter group”, Ann. Probab., 24:4 (1996), 1993–2006 | DOI | MR | Zbl
[25] R. Lyons and Y. Peres, Probability on Trees and Networks, Cambridge University Press, 2016 ; Available at http://mypage.iu.edu/\string rdlyons/ | MR | Zbl
[26] C. F. Miller and M. Shapiro, “Solvable Baumslag-Solitar groups are not almost convex”, Geom. Ded., 72:2 (1998), 123–127 | DOI | MR | Zbl
[27] A. Y. Ol'shanskii, D. V. Osin, and M. S. Sapir, “Lacunary hyperbolic groups”, Geom. Topol., 13:4 (2009), 2051–2140 | DOI | MR | Zbl
[28] P. Pansu, “Croissance des boules et des géodésiques fermées dans les nilvariétés”, Erg. Th. Dynam. Systems, 3:3 (1983), 415–445 | DOI | MR | Zbl
[29] C. Pittet, “The isoperimetric profile of homogeneous Riemannian manifolds”, J. Differential Geom., 54 (2000), 255–302 | DOI | MR | Zbl
[30] Plato, Oeuvres complètes 5, Sophiste; Politique; Philèbe; Timée; Critias / Platon, trad. nouv. avec des notices et des notes par E. Chambry, Garnier Frères, Paris, 1950
[31] T. Riley and A. Warshall, “The unbounded dead-end depth property is not a group invariant”, Internat. J. Algebra Comput., 16:5 (2006), 969–83 | DOI | MR
[32] C. Shannon, “A mathematical theory of communication”, Bell System Tech. J., 27 (1948), 379–423, 623–656 | DOI | MR | Zbl
[33] J. R. Stallings, Group Theory and Three Dimensional Manifolds, Yale University Press, New Haven, 1971 | MR | Zbl
[34] C. Thiel, Zur Fast-Konvexität einiger nilpotenter Gruppen, Bonner Mathematische Schriften, 234, Univ. Bonn, Bonn, 1992, 50 pp. | MR | Zbl
[35] Á. Timár, “Cutsets in Infinite Graphs”, Combin. Probab. Comput., 16:1 (2007), 159–166 | DOI | MR | Zbl
[36] A. Warshall, “Deep pockets in lattices and other groups”, Trans. Amer. Math. Soc., 362:2 (2009), 577–601 | DOI | MR
[37] A. Warshall, “A group with deep pockets for all finite generating sets”, Israel J. Math., 185 (2011), 317–342 | DOI | MR | Zbl
[38] A. Warshall, Strongly $t$-logarithmic $t$-generating sets: Geometric properties of some soluble groups, 2008, arXiv: 0808.2789
[39] C. Webster and A. Winchester, “Busemann points of infinite graphs”, Trans. Amer. Math. Soc., 358:9 (2006), 4209–4224 | DOI | MR | Zbl
[40] A. J. Wilkie and L. van den Dries, “An effective bound for groups of linear growth”, Arch. Math. (Basel), 42:5 (1984), 391–396 | DOI | MR | Zbl