Connectedness of spheres in Cayley graphs
Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 190-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of connection thickness of spheres in a Cayley graph, related to dead-ends and their retreat depth. It was well-known that connection thickness is bounded for finitely presented one-ended groups. We compute that for natural generating sets of lamplighter groups on a line or on a tree, connection thickness is linear or logarithmic respectively. We show that it depends strongly on the generating set. We give an example where the metric induced at the (finite) thickness of connection gives diameter of order $n^2$ to the sphere of radius $n$. We also discuss the rarity of dead-ends and the relationships of connection thickness with cut sets in percolation theory and with almost-convexity. Finally, we present a list of open questions about spheres in Cayley graphs.
Keywords: connectedness, sphere, connection thickness, Cayley graphs, dead-ends, wreath products.
@article{ADM_2018_26_2_a2,
     author = {J\'er\'emie Brieussel and Antoine Gournay},
     title = {Connectedness of spheres in {Cayley} graphs},
     journal = {Algebra and discrete mathematics},
     pages = {190--246},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a2/}
}
TY  - JOUR
AU  - Jérémie Brieussel
AU  - Antoine Gournay
TI  - Connectedness of spheres in Cayley graphs
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 190
EP  - 246
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a2/
LA  - en
ID  - ADM_2018_26_2_a2
ER  - 
%0 Journal Article
%A Jérémie Brieussel
%A Antoine Gournay
%T Connectedness of spheres in Cayley graphs
%J Algebra and discrete mathematics
%D 2018
%P 190-246
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a2/
%G en
%F ADM_2018_26_2_a2
Jérémie Brieussel; Antoine Gournay. Connectedness of spheres in Cayley graphs. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 190-246. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a2/

[1] E. Babson and I. Benjamini, “Cut sets and normed cohomology with applications to percolation”, Proc. Amer. Math. Soc., 127 (1999), 589–597 | DOI | MR | Zbl

[2] G. Baumslag and R. Strebel, “Some finitely generated, infinitely related metabelian groups with trivial multiplicator”, J. Algebra, 40:1 (1976), 46–62 | DOI | MR | Zbl

[3] L. Bartholdi and W. Woess, “Spectral computations on lamplighter groups and Diestel-Leader graphs”, J. Fourier Anal. Appl., 11:2 (2005), 175–202 | DOI | MR | Zbl

[4] Algebra and Logic, 36:3 (1997), 155–163 | DOI | MR

[5] J. Cannon, “Almost convex groups”, Geom. Dedicata, 22 (1987), 197–210 | DOI | MR | Zbl

[6] D. J. Collins, M. Edjvet and C. P. Gill, “Growth series of the group $\langle x,y \mid x^{-1}yx=y^\ell \rangle$”, Arch. Math., 62 (1994), 1–11 | DOI | MR | Zbl

[7] S. Cleary and T. Riley, “A finitely presented group with unbounded dead-end depth”, Proc. Amer. Math. Soc., 134:2 (2006), 343–349 ; With erratum Proc. Amer. Math. Soc., 136 (2008), 2641–2645 | DOI | MR | Zbl | DOI | MR | Zbl

[8] S. Cleary and J. Taback, “Dead end words in lamplighter groups and other wreath products”, Q. J. Math., 56:2 (2005), 165–178 | DOI | MR | Zbl

[9] C. Drutu, S. Mozes and M. Sapir, “Divergence in lattices in semisimple Lie groups and graphs of groups”, Trans. A.M.S., 362:5 (2010), 2451–2505 | DOI | MR | Zbl

[10] M. Duchin, S. Lelièvre and C. Mooney, “The geometry of spheres in free Abelian groups”, Geom. Ded., 161:1 (2012), 169–187 | DOI | MR | Zbl

[11] M. Duchin, S. Lelièvre and C. Mooney, “Statistical hyperbolicity in groups”, Algebr. Geom. Topol., 12:1 (2012), 1–18 | DOI | MR | Zbl

[12] M. Duchin, S. Lelièvre and C. Mooney, “The sprawl conjecture for convex bodies”, Exper. Math., 22:2 (2013), 113–122 | DOI | MR | Zbl

[13] A. Erschler, “On isoperimetric profiles of finitely generated groups”, Geom. Ded., 100 (2003), 157–171 | DOI | MR | Zbl

[14] L. Funar, M. Giannoudovardi and D. Otera, On groups with linear sci growth, to appear in Fund. Math., 2013 ; arXiv: 1312.0802 | MR

[15] G. Georgakopoulos, Group-walk random graphs, 2015, arXiv: ; To appear in Groups, Graphs, and Random Walks, LMS Lecture Note Series, eds. T. Ceccherini-Silberstein, M. Salvatori, and E. Sava-Huss, 2016 1506.02697 | MR | MR

[16] S. Gersten, “Quadratic divergence in geodesics in $CAT(0)$-spaces”, Geom. Funct. Anal., 4:1 (1994), 37–51 | DOI | MR | Zbl

[17] S. Gersten, “Divergence in 3-manifold groups”, Geom. Funct. Anal., 4:6 (1994), 633–647 | DOI | MR | Zbl

[18] A. Gournay, “A remark on the connectedness of spheres in Cayley graphs”, C. R. Math. Acad. Sci. Paris, 352:7–8 (2014), 573–576 | DOI | MR | Zbl

[19] R. Grigorchuk and A. Zuk, “The lamplighter group as a group generated by a 2-state automaton and its spectrum”, Geom. Ded., 87 (2001), 209–244 | DOI | MR | Zbl

[20] D. L. Johnson, “Rational growth of wreath products”, Groups St Andrews 1989, v. 2, 309–315 | MR | Zbl

[21] J. Kellerhals, N. Monod and M. Rørdam, “Non-supramenable groups acting on locally compact spaces”, Doc. Math., 18 (2013), 1597–1626 | MR | Zbl

[22] V. Kaimanovich and A. Vershik, “Random walks on discrete groups: boundary and entropy”, Ann. Probab., 11:3 (1983), 457–490 | DOI | MR | Zbl

[23] J. Lehnert, “Some remarks on depth of dead-ends in groups”, Internat. J. Algebra Comput., 19:4 (2009), 585–594 | DOI | MR | Zbl

[24] R. Lyons, R. Pemantle and Y. Peres, “Random walks on the lamplighter group”, Ann. Probab., 24:4 (1996), 1993–2006 | DOI | MR | Zbl

[25] R. Lyons and Y. Peres, Probability on Trees and Networks, Cambridge University Press, 2016 ; Available at http://mypage.iu.edu/\string rdlyons/ | MR | Zbl

[26] C. F. Miller and M. Shapiro, “Solvable Baumslag-Solitar groups are not almost convex”, Geom. Ded., 72:2 (1998), 123–127 | DOI | MR | Zbl

[27] A. Y. Ol'shanskii, D. V. Osin, and M. S. Sapir, “Lacunary hyperbolic groups”, Geom. Topol., 13:4 (2009), 2051–2140 | DOI | MR | Zbl

[28] P. Pansu, “Croissance des boules et des géodésiques fermées dans les nilvariétés”, Erg. Th. Dynam. Systems, 3:3 (1983), 415–445 | DOI | MR | Zbl

[29] C. Pittet, “The isoperimetric profile of homogeneous Riemannian manifolds”, J. Differential Geom., 54 (2000), 255–302 | DOI | MR | Zbl

[30] Plato, Oeuvres complètes 5, Sophiste; Politique; Philèbe; Timée; Critias / Platon, trad. nouv. avec des notices et des notes par E. Chambry, Garnier Frères, Paris, 1950

[31] T. Riley and A. Warshall, “The unbounded dead-end depth property is not a group invariant”, Internat. J. Algebra Comput., 16:5 (2006), 969–83 | DOI | MR

[32] C. Shannon, “A mathematical theory of communication”, Bell System Tech. J., 27 (1948), 379–423, 623–656 | DOI | MR | Zbl

[33] J. R. Stallings, Group Theory and Three Dimensional Manifolds, Yale University Press, New Haven, 1971 | MR | Zbl

[34] C. Thiel, Zur Fast-Konvexität einiger nilpotenter Gruppen, Bonner Mathematische Schriften, 234, Univ. Bonn, Bonn, 1992, 50 pp. | MR | Zbl

[35] Á. Timár, “Cutsets in Infinite Graphs”, Combin. Probab. Comput., 16:1 (2007), 159–166 | DOI | MR | Zbl

[36] A. Warshall, “Deep pockets in lattices and other groups”, Trans. Amer. Math. Soc., 362:2 (2009), 577–601 | DOI | MR

[37] A. Warshall, “A group with deep pockets for all finite generating sets”, Israel J. Math., 185 (2011), 317–342 | DOI | MR | Zbl

[38] A. Warshall, Strongly $t$-logarithmic $t$-generating sets: Geometric properties of some soluble groups, 2008, arXiv: 0808.2789

[39] C. Webster and A. Winchester, “Busemann points of infinite graphs”, Trans. Amer. Math. Soc., 358:9 (2006), 4209–4224 | DOI | MR | Zbl

[40] A. J. Wilkie and L. van den Dries, “An effective bound for groups of linear growth”, Arch. Math. (Basel), 42:5 (1984), 391–396 | DOI | MR | Zbl