Modules in which every surjective endomorphism has a $\delta$-small kernel
Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 170-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the notion of $\delta$-Hopfian modules. We give some properties of these modules and provide a characterization of semisimple rings in terms of $\delta$-Hopfian modules by proving that a ring $R$ is semisimple if and only if every $R$-module is $\delta$-Hopfian. Also, we show that for a ring $R$, $\delta(R)=J(R)$ if and only if for all $R$-modules, the conditions $\delta$-Hopfian and generalized Hopfian are equivalent. Moreover, we prove that $\delta$-Hopfian property is a Morita invariant. Further, the $\delta$-Hopficity of modules over truncated polynomial and triangular matrix rings are considered.
Keywords: Dedekind finite modules, generalized Hopfian modules, $\delta$-Hopfian modules.
Mots-clés : Hopfian modules
@article{ADM_2018_26_2_a1,
     author = {Shahabaddin Ebrahimi Atani and Mehdi Khoramdel and Saboura Dolati Pishhesari},
     title = {Modules in which every surjective endomorphism has a $\delta$-small kernel},
     journal = {Algebra and discrete mathematics},
     pages = {170--189},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a1/}
}
TY  - JOUR
AU  - Shahabaddin Ebrahimi Atani
AU  - Mehdi Khoramdel
AU  - Saboura Dolati Pishhesari
TI  - Modules in which every surjective endomorphism has a $\delta$-small kernel
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 170
EP  - 189
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a1/
LA  - en
ID  - ADM_2018_26_2_a1
ER  - 
%0 Journal Article
%A Shahabaddin Ebrahimi Atani
%A Mehdi Khoramdel
%A Saboura Dolati Pishhesari
%T Modules in which every surjective endomorphism has a $\delta$-small kernel
%J Algebra and discrete mathematics
%D 2018
%P 170-189
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a1/
%G en
%F ADM_2018_26_2_a1
Shahabaddin Ebrahimi Atani; Mehdi Khoramdel; Saboura Dolati Pishhesari. Modules in which every surjective endomorphism has a $\delta$-small kernel. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 170-189. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a1/

[1] Sh. Asgari, A. Haghany, and M. R. Vedadi, “Quasi Co-Hopfian Modules and Applications”, Comm Algebra, 36 (2008), 1801–1816 | DOI | MR | Zbl

[2] G. Baumslag, “Hopficity and abelian groups”, Topics in Abelian Groups, eds. J. Irwin, E. A. Walker, Scott Foresmann and Company, 1963, 331–335 | MR

[3] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, “Generalized triangular matrix rings and the fully invariant extending property”, Rocky Mountain J. Math., 32 (2002), 1299–1319 | DOI | MR | Zbl

[4] A. Ghorbani, A. Haghany, “Generalized Hopfian modules”, J. Algebra, 255:2 (2002), 324–341 | DOI | MR | Zbl

[5] K. R. Goodearl, Von Neumann Regular Rings, Monographs and studies in mathematics, 1979 | MR | Zbl

[6] A. Haghany, K. Varadarajan, “IBN and related properties for rings”, Acta Math. Hung., 93 (2002), 251–261 | DOI | MR

[7] A. Haghany, M. R. Vedadi, “Modules whose injective endomorphisms are essential”, J. Algebra, 243 (2001), 765–779 | DOI | MR | Zbl

[8] V. Hiremath, “Hopfian rings and Hopfian modules”, Indian J. Pure Appl. Math., 17 (1986), 895–900 | MR | Zbl

[9] I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl

[10] T. Y. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1998 | MR

[11] R. Triback, “Finitely generated $\delta$-supplemented modules are amply $\delta$-supplemented”, Bull. Aust. Math. Soc., 86 (2012), 430–439 | DOI | MR

[12] R. Triback, “On $\delta$-Local Modules and Amply $\delta$-Supplemented Modules”, Journal of Algebra and Its Applications, 12:2 (2013), 1250144 | DOI | MR

[13] K. Varadarajan, “A generalization of Hilbert's basis theorem”, Comm. Algebra, 10:20 (1982), 2191–2204 | DOI | MR | Zbl

[14] K. Varadarajan, “Hopfian and co-Hopfian objects”, Publicacions Matemàtiques, 36 (1992), 293–317 | DOI | MR | Zbl

[15] K. Varadarajan, “On Hopfian rings”, Acta Math. Hungar., 83:1–2 (1999), 17–26 | DOI | MR | Zbl

[16] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991 | MR | Zbl

[17] G. Yang, Z. Liu, “Notes on Generalized Hopfian and Weakly Co-Hopfian Modules”, Comm. Algebra, 38 (2010), 3556–3566 | DOI | MR | Zbl

[18] Y. Zhou, “Generalizations of perfect, semiperfect, and semiregular rings”, Algebra Colloquium, 7:3 (2000), 305–318 | DOI | MR | Zbl