Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_26_2_a1, author = {Shahabaddin Ebrahimi Atani and Mehdi Khoramdel and Saboura Dolati Pishhesari}, title = {Modules in which every surjective endomorphism has a $\delta$-small kernel}, journal = {Algebra and discrete mathematics}, pages = {170--189}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a1/} }
TY - JOUR AU - Shahabaddin Ebrahimi Atani AU - Mehdi Khoramdel AU - Saboura Dolati Pishhesari TI - Modules in which every surjective endomorphism has a $\delta$-small kernel JO - Algebra and discrete mathematics PY - 2018 SP - 170 EP - 189 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a1/ LA - en ID - ADM_2018_26_2_a1 ER -
%0 Journal Article %A Shahabaddin Ebrahimi Atani %A Mehdi Khoramdel %A Saboura Dolati Pishhesari %T Modules in which every surjective endomorphism has a $\delta$-small kernel %J Algebra and discrete mathematics %D 2018 %P 170-189 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a1/ %G en %F ADM_2018_26_2_a1
Shahabaddin Ebrahimi Atani; Mehdi Khoramdel; Saboura Dolati Pishhesari. Modules in which every surjective endomorphism has a $\delta$-small kernel. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 170-189. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a1/
[1] Sh. Asgari, A. Haghany, and M. R. Vedadi, “Quasi Co-Hopfian Modules and Applications”, Comm Algebra, 36 (2008), 1801–1816 | DOI | MR | Zbl
[2] G. Baumslag, “Hopficity and abelian groups”, Topics in Abelian Groups, eds. J. Irwin, E. A. Walker, Scott Foresmann and Company, 1963, 331–335 | MR
[3] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, “Generalized triangular matrix rings and the fully invariant extending property”, Rocky Mountain J. Math., 32 (2002), 1299–1319 | DOI | MR | Zbl
[4] A. Ghorbani, A. Haghany, “Generalized Hopfian modules”, J. Algebra, 255:2 (2002), 324–341 | DOI | MR | Zbl
[5] K. R. Goodearl, Von Neumann Regular Rings, Monographs and studies in mathematics, 1979 | MR | Zbl
[6] A. Haghany, K. Varadarajan, “IBN and related properties for rings”, Acta Math. Hung., 93 (2002), 251–261 | DOI | MR
[7] A. Haghany, M. R. Vedadi, “Modules whose injective endomorphisms are essential”, J. Algebra, 243 (2001), 765–779 | DOI | MR | Zbl
[8] V. Hiremath, “Hopfian rings and Hopfian modules”, Indian J. Pure Appl. Math., 17 (1986), 895–900 | MR | Zbl
[9] I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl
[10] T. Y. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1998 | MR
[11] R. Triback, “Finitely generated $\delta$-supplemented modules are amply $\delta$-supplemented”, Bull. Aust. Math. Soc., 86 (2012), 430–439 | DOI | MR
[12] R. Triback, “On $\delta$-Local Modules and Amply $\delta$-Supplemented Modules”, Journal of Algebra and Its Applications, 12:2 (2013), 1250144 | DOI | MR
[13] K. Varadarajan, “A generalization of Hilbert's basis theorem”, Comm. Algebra, 10:20 (1982), 2191–2204 | DOI | MR | Zbl
[14] K. Varadarajan, “Hopfian and co-Hopfian objects”, Publicacions Matemàtiques, 36 (1992), 293–317 | DOI | MR | Zbl
[15] K. Varadarajan, “On Hopfian rings”, Acta Math. Hungar., 83:1–2 (1999), 17–26 | DOI | MR | Zbl
[16] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991 | MR | Zbl
[17] G. Yang, Z. Liu, “Notes on Generalized Hopfian and Weakly Co-Hopfian Modules”, Comm. Algebra, 38 (2010), 3556–3566 | DOI | MR | Zbl
[18] Y. Zhou, “Generalizations of perfect, semiperfect, and semiregular rings”, Algebra Colloquium, 7:3 (2000), 305–318 | DOI | MR | Zbl