Endomorphisms of Cayley digraphs of~rectangular groups
Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 153-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\operatorname{Cay}(S,A)$ denote the Cayley digraph of the semigroup $S$ with respect to the set $A$, where $A$ is any subset of $S$. The function $f\colon \operatorname{Cay}(S,A) \to \operatorname{Cay}(S,A)$ is called an endomorphism of $\operatorname{Cay}(S,A)$ if for each $(x,y) \in E(\operatorname{Cay}(S,A))$ implies $(f(x),f(y)) \in E(\operatorname{Cay}(S,A))$ as well, where $E(\operatorname{Cay}(S,A))$ is an arc set of $\operatorname{Cay}(S,A)$. We characterize the endomorphisms of Cayley digraphs of rectangular groups $G\times L\times R$, where the connection sets are in the form of $A=K\times P\times T$.
Keywords: Cayley digraphs, rectangular groups, endomorphisms.
@article{ADM_2018_26_2_a0,
     author = {Srichan Arworn and Boyko Gyurov and Nuttawoot Nupo and Sayan Panma},
     title = {Endomorphisms of {Cayley} digraphs of~rectangular groups},
     journal = {Algebra and discrete mathematics},
     pages = {153--169},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/}
}
TY  - JOUR
AU  - Srichan Arworn
AU  - Boyko Gyurov
AU  - Nuttawoot Nupo
AU  - Sayan Panma
TI  - Endomorphisms of Cayley digraphs of~rectangular groups
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 153
EP  - 169
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/
LA  - en
ID  - ADM_2018_26_2_a0
ER  - 
%0 Journal Article
%A Srichan Arworn
%A Boyko Gyurov
%A Nuttawoot Nupo
%A Sayan Panma
%T Endomorphisms of Cayley digraphs of~rectangular groups
%J Algebra and discrete mathematics
%D 2018
%P 153-169
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/
%G en
%F ADM_2018_26_2_a0
Srichan Arworn; Boyko Gyurov; Nuttawoot Nupo; Sayan Panma. Endomorphisms of Cayley digraphs of~rectangular groups. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 153-169. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/

[1] B. L. Bauslaugh, Homomorphisms of infinite directed graphs, Ph.D. Thesis, Simon Fraser University, 1994, 132 pp. | MR

[2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993 | MR

[3] J. A. Bondy, U. S. R. Murty, Graph Theory with applications, Elsevier, New York, 1976 | MR | Zbl

[4] P. J. Cameron, Graph homomorphisms, Combinatorics Study Group Notes, 2006

[5] J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995 | MR | Zbl

[6] A. V. Kelarev, “On undirected Cayley graphs”, Austral. J. Combin., 25 (2002), 73–78 | MR | Zbl

[7] B. Khosravi, “On Cayley graphs of left groups”, Houston J. Math., 35:3 (2009), 745–755 | MR | Zbl

[8] B. Khosravi and B. Khosravi, “A characterization of Cayley graphs of Brandt semigroups”, Bull. Malays. Math. Sci. Soc., 35 (2012), 399–410 | MR | Zbl

[9] B. Khosravi, M. Mahmoudi, “On Cayley graphs of rectangular groups”, Discrete Math., 310 (2010), 804–811 | DOI | MR | Zbl

[10] U. Knauer, Algebraic graph theory, W. de Gruyter, Berlin, 2011 | MR | Zbl

[11] C. H. Li, “Isomorphisms of connected Cayley graphs”, Graphs Combin., 14 (1998), 37–44 | DOI | MR

[12] C. H. Li, “On isomorphisms of finite Cayley graphs—a survey”, Discrete Math., 256 (2002), 301–334 | DOI | MR | Zbl

[13] J. Meksawang, S. Panma, “Isomorphism conditions for Cayley graphs of rectangular groups”, Bull. Malays. Math. Sci. Soc., 39 (2016), 29–41 | MR

[14] S. Panma, “Characterization of Cayley graphs of rectangular groups”, Thai J. Math., 8:3 (2010), 535–543 | MR | Zbl

[15] S. Panma, U. Knauer, Sr. Arworn, “On transitive Cayley graphs of right (left) groups and of Clifford semigroups”, Thai J. Math., 2 (2004), 183–195 | Zbl

[16] S. Panma, U. Knauer, Sr. Arworn, “On transitive Cayley graphs of strong semilattice of right (left) groups”, Discrete Math., 309 (2009), 5393–5403 | DOI | MR | Zbl

[17] M. Ruangnai, S. Panma, Sr. Arworn, “On Cayley isomorphisms of left and right groups”, Int. J. of Pure and Applied Math., 80:4 (2012), 561–571 | Zbl

[18] D. Shurbert, An introduction to graph homomorphisms, University of Puget Sound, 2013, 12 pp.