Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_26_2_a0, author = {Srichan Arworn and Boyko Gyurov and Nuttawoot Nupo and Sayan Panma}, title = {Endomorphisms of {Cayley} digraphs of~rectangular groups}, journal = {Algebra and discrete mathematics}, pages = {153--169}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/} }
TY - JOUR AU - Srichan Arworn AU - Boyko Gyurov AU - Nuttawoot Nupo AU - Sayan Panma TI - Endomorphisms of Cayley digraphs of~rectangular groups JO - Algebra and discrete mathematics PY - 2018 SP - 153 EP - 169 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/ LA - en ID - ADM_2018_26_2_a0 ER -
Srichan Arworn; Boyko Gyurov; Nuttawoot Nupo; Sayan Panma. Endomorphisms of Cayley digraphs of~rectangular groups. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 153-169. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/
[1] B. L. Bauslaugh, Homomorphisms of infinite directed graphs, Ph.D. Thesis, Simon Fraser University, 1994, 132 pp. | MR
[2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993 | MR
[3] J. A. Bondy, U. S. R. Murty, Graph Theory with applications, Elsevier, New York, 1976 | MR | Zbl
[4] P. J. Cameron, Graph homomorphisms, Combinatorics Study Group Notes, 2006
[5] J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995 | MR | Zbl
[6] A. V. Kelarev, “On undirected Cayley graphs”, Austral. J. Combin., 25 (2002), 73–78 | MR | Zbl
[7] B. Khosravi, “On Cayley graphs of left groups”, Houston J. Math., 35:3 (2009), 745–755 | MR | Zbl
[8] B. Khosravi and B. Khosravi, “A characterization of Cayley graphs of Brandt semigroups”, Bull. Malays. Math. Sci. Soc., 35 (2012), 399–410 | MR | Zbl
[9] B. Khosravi, M. Mahmoudi, “On Cayley graphs of rectangular groups”, Discrete Math., 310 (2010), 804–811 | DOI | MR | Zbl
[10] U. Knauer, Algebraic graph theory, W. de Gruyter, Berlin, 2011 | MR | Zbl
[11] C. H. Li, “Isomorphisms of connected Cayley graphs”, Graphs Combin., 14 (1998), 37–44 | DOI | MR
[12] C. H. Li, “On isomorphisms of finite Cayley graphs—a survey”, Discrete Math., 256 (2002), 301–334 | DOI | MR | Zbl
[13] J. Meksawang, S. Panma, “Isomorphism conditions for Cayley graphs of rectangular groups”, Bull. Malays. Math. Sci. Soc., 39 (2016), 29–41 | MR
[14] S. Panma, “Characterization of Cayley graphs of rectangular groups”, Thai J. Math., 8:3 (2010), 535–543 | MR | Zbl
[15] S. Panma, U. Knauer, Sr. Arworn, “On transitive Cayley graphs of right (left) groups and of Clifford semigroups”, Thai J. Math., 2 (2004), 183–195 | Zbl
[16] S. Panma, U. Knauer, Sr. Arworn, “On transitive Cayley graphs of strong semilattice of right (left) groups”, Discrete Math., 309 (2009), 5393–5403 | DOI | MR | Zbl
[17] M. Ruangnai, S. Panma, Sr. Arworn, “On Cayley isomorphisms of left and right groups”, Int. J. of Pure and Applied Math., 80:4 (2012), 561–571 | Zbl
[18] D. Shurbert, An introduction to graph homomorphisms, University of Puget Sound, 2013, 12 pp.