Endomorphisms of Cayley digraphs of~rectangular groups
Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 153-169

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\operatorname{Cay}(S,A)$ denote the Cayley digraph of the semigroup $S$ with respect to the set $A$, where $A$ is any subset of $S$. The function $f\colon \operatorname{Cay}(S,A) \to \operatorname{Cay}(S,A)$ is called an endomorphism of $\operatorname{Cay}(S,A)$ if for each $(x,y) \in E(\operatorname{Cay}(S,A))$ implies $(f(x),f(y)) \in E(\operatorname{Cay}(S,A))$ as well, where $E(\operatorname{Cay}(S,A))$ is an arc set of $\operatorname{Cay}(S,A)$. We characterize the endomorphisms of Cayley digraphs of rectangular groups $G\times L\times R$, where the connection sets are in the form of $A=K\times P\times T$.
Keywords: Cayley digraphs, rectangular groups, endomorphisms.
@article{ADM_2018_26_2_a0,
     author = {Srichan Arworn and Boyko Gyurov and Nuttawoot Nupo and Sayan Panma},
     title = {Endomorphisms of {Cayley} digraphs of~rectangular groups},
     journal = {Algebra and discrete mathematics},
     pages = {153--169},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/}
}
TY  - JOUR
AU  - Srichan Arworn
AU  - Boyko Gyurov
AU  - Nuttawoot Nupo
AU  - Sayan Panma
TI  - Endomorphisms of Cayley digraphs of~rectangular groups
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 153
EP  - 169
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/
LA  - en
ID  - ADM_2018_26_2_a0
ER  - 
%0 Journal Article
%A Srichan Arworn
%A Boyko Gyurov
%A Nuttawoot Nupo
%A Sayan Panma
%T Endomorphisms of Cayley digraphs of~rectangular groups
%J Algebra and discrete mathematics
%D 2018
%P 153-169
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/
%G en
%F ADM_2018_26_2_a0
Srichan Arworn; Boyko Gyurov; Nuttawoot Nupo; Sayan Panma. Endomorphisms of Cayley digraphs of~rectangular groups. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 153-169. http://geodesic.mathdoc.fr/item/ADM_2018_26_2_a0/