Variants of the lattice of partitions of a countable set
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 8-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the ordered by inclusion lattice $\operatorname{Part}(M)$ of all partitions of a countable set $M$. The lattice $\operatorname{Part}(M)$ is a semigroup with respect to the operation $\wedge$ which maps two partitions to their greatest lower bound. We obtain necessary and sufficiency conditions for isomorphism of two variants of the semigroup $\operatorname{Part}(M)$.
Keywords: sandwich-semigroup, lattice of partitions.
Mots-clés : variant
@article{ADM_2018_26_1_a2,
     author = {Oleksandra O. Desiateryk and Olexandr G. Ganyushkin},
     title = {Variants of the lattice of partitions of a countable set},
     journal = {Algebra and discrete mathematics},
     pages = {8--18},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a2/}
}
TY  - JOUR
AU  - Oleksandra O. Desiateryk
AU  - Olexandr G. Ganyushkin
TI  - Variants of the lattice of partitions of a countable set
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 8
EP  - 18
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a2/
LA  - en
ID  - ADM_2018_26_1_a2
ER  - 
%0 Journal Article
%A Oleksandra O. Desiateryk
%A Olexandr G. Ganyushkin
%T Variants of the lattice of partitions of a countable set
%J Algebra and discrete mathematics
%D 2018
%P 8-18
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a2/
%G en
%F ADM_2018_26_1_a2
Oleksandra O. Desiateryk; Olexandr G. Ganyushkin. Variants of the lattice of partitions of a countable set. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 8-18. http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a2/

[1] E. Lyapin, Polugruppy, Fizmatgiz, 1960 | Zbl

[2] K. Chase, “Sandwich semigroups of binary relations”, Discrete Math., 28:3 (1979), 231–236 | DOI | MR | Zbl

[3] J. Hickey, “Semigroups under a sendwich operation”, Proc. Edinburg Math. Soc. (2), 26:3 (1983), 371–382 | DOI | MR | Zbl

[4] T. Khan, M. Lawson, “Variants of regular semigroups”, Semigroup Forum., 62:3 (2001), 358–374 | DOI | MR | Zbl

[5] V. Mazorchuk, G. Tsyaputa, “Isolated subsemigroups in the variants of $\mathcal{Y}_n$”, Acta Math. Univ. Com., LXXVII:1 (2008), 63–84 | MR | Zbl

[6] I. Dolinka, J. East, “Variants of finite full transformation semigroups”, Internat. J. Algebra Comput., 25:8 (2015), 1187–1222 | DOI | MR | Zbl

[7] K. D. Magill Jr., S. Subbiah, “Green's relations for regular elements of sandwich semigroups. I. General results”, Proc. London Math. Soc., 31:2 (1975), 194–210 | DOI | MR | Zbl

[8] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups. An Introduction., Algebra and Applications, Springer-Verlag, 2009 | DOI | MR | Zbl

[9] G. Gretcer, Obshchaya teoriya reshotok, Mir, 1981

[10] O. Desiateryk, “Variants of commutative bands with zero”, Bulletin of Taras Shevchenko National University of Kyiv, Series: Physics Mathematics, 4 (2015), 15–20 | Zbl