Mots-clés : variant
@article{ADM_2018_26_1_a2,
author = {Oleksandra O. Desiateryk and Olexandr G. Ganyushkin},
title = {Variants of the lattice of partitions of a countable set},
journal = {Algebra and discrete mathematics},
pages = {8--18},
year = {2018},
volume = {26},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a2/}
}
Oleksandra O. Desiateryk; Olexandr G. Ganyushkin. Variants of the lattice of partitions of a countable set. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 8-18. http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a2/
[1] E. Lyapin, Polugruppy, Fizmatgiz, 1960 | Zbl
[2] K. Chase, “Sandwich semigroups of binary relations”, Discrete Math., 28:3 (1979), 231–236 | DOI | MR | Zbl
[3] J. Hickey, “Semigroups under a sendwich operation”, Proc. Edinburg Math. Soc. (2), 26:3 (1983), 371–382 | DOI | MR | Zbl
[4] T. Khan, M. Lawson, “Variants of regular semigroups”, Semigroup Forum., 62:3 (2001), 358–374 | DOI | MR | Zbl
[5] V. Mazorchuk, G. Tsyaputa, “Isolated subsemigroups in the variants of $\mathcal{Y}_n$”, Acta Math. Univ. Com., LXXVII:1 (2008), 63–84 | MR | Zbl
[6] I. Dolinka, J. East, “Variants of finite full transformation semigroups”, Internat. J. Algebra Comput., 25:8 (2015), 1187–1222 | DOI | MR | Zbl
[7] K. D. Magill Jr., S. Subbiah, “Green's relations for regular elements of sandwich semigroups. I. General results”, Proc. London Math. Soc., 31:2 (1975), 194–210 | DOI | MR | Zbl
[8] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups. An Introduction., Algebra and Applications, Springer-Verlag, 2009 | DOI | MR | Zbl
[9] G. Gretcer, Obshchaya teoriya reshotok, Mir, 1981
[10] O. Desiateryk, “Variants of commutative bands with zero”, Bulletin of Taras Shevchenko National University of Kyiv, Series: Physics Mathematics, 4 (2015), 15–20 | Zbl