Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_26_1_a13, author = {Bohdan Zabavsky}, title = {Type conditions of stable range for identification of qualitative generalized classes of rings}, journal = {Algebra and discrete mathematics}, pages = {144--152}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a13/} }
TY - JOUR AU - Bohdan Zabavsky TI - Type conditions of stable range for identification of qualitative generalized classes of rings JO - Algebra and discrete mathematics PY - 2018 SP - 144 EP - 152 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a13/ LA - en ID - ADM_2018_26_1_a13 ER -
Bohdan Zabavsky. Type conditions of stable range for identification of qualitative generalized classes of rings. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 144-152. http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a13/
[1] M. Contessa, “On certain classes of PM-rings”, Comm. Algebra, 12 (1984), 1447–1469 | DOI | MR | Zbl
[2] I. Gillman, M. Henriksen, “Rings of continuous functions in which every finitely generated ideal is principal”, Trans. Amer. Math. Soc., 82:2 (1956), 366–391 | DOI | MR | Zbl
[3] R. Gilmer, J. Huckaba, “$\Delta$-Rings”, J. Algebra, 28 (1974), 414–432 | DOI | MR | Zbl
[4] I. Kaplansky, “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl
[5] W. McGovern, “Neat rings”, J. Pure and Appl. Algebra, 206:2 (2006), 243–258 | DOI | MR
[6] B. V. Zabavsky, Diagonal reduction of matrices over rings, Mathematical Studies, XVI, VNTL Publishers, Lviv, 2012 | MR | Zbl