Planarity of a spanning subgraph of the intersection graph of ideals of a~commutative ring~I, nonquasilocal case
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 130-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The rings considered in this article are nonzero commutative with identity which are not fields. Let $R$ be a ring. We denote the collection of all proper ideals of $R$ by $\mathbb{I}(R)$ and the collection $\mathbb{I}(R)\setminus \{(0)\}$ by $\mathbb{I}(R)^{*}$. Recall that the intersection graph of ideals of $R$, denoted by $G(R)$, is an undirected graph whose vertex set is $\mathbb{I}(R)^{*}$ and distinct vertices $I, J$ are adjacent if and only if $I\cap J\neq (0)$. In this article, we consider a subgraph of $G(R)$, denoted by $H(R)$, whose vertex set is $\mathbb{I}(R)^{*}$ and distinct vertices $I, J$ are adjacent in $H(R)$ if and only if $IJ\neq (0)$. The purpose of this article is to characterize rings $R$ with at least two maximal ideals such that $H(R)$ is planar.
Keywords: quasilocal ring, special principal ideal ring, clique number of a graph, planar graph.
@article{ADM_2018_26_1_a12,
     author = {P. Vadhel and S. Visweswaran},
     title = {Planarity of a spanning subgraph of the intersection graph of ideals of a~commutative {ring~I,} nonquasilocal case},
     journal = {Algebra and discrete mathematics},
     pages = {130--143},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a12/}
}
TY  - JOUR
AU  - P. Vadhel
AU  - S. Visweswaran
TI  - Planarity of a spanning subgraph of the intersection graph of ideals of a~commutative ring~I, nonquasilocal case
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 130
EP  - 143
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a12/
LA  - en
ID  - ADM_2018_26_1_a12
ER  - 
%0 Journal Article
%A P. Vadhel
%A S. Visweswaran
%T Planarity of a spanning subgraph of the intersection graph of ideals of a~commutative ring~I, nonquasilocal case
%J Algebra and discrete mathematics
%D 2018
%P 130-143
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a12/
%G en
%F ADM_2018_26_1_a12
P. Vadhel; S. Visweswaran. Planarity of a spanning subgraph of the intersection graph of ideals of a~commutative ring~I, nonquasilocal case. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 130-143. http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a12/

[1] S. Akbari, R. Nikandish and M. J. Nikmehr, “Some results on the intersection graphs of ideals of rings”, J. Algebra Appl., 12:4 (2013), 1250200, 13 pp. | DOI | MR | Zbl

[2] D. F. Anderson, M. C. Axtell and J. A. Stickles, Jr., “Zero-divisor graphs in commutative rings”, Commutative Algebra, Noetherian and Non-Noetherian Perspectives, eds. M. Fontana, S. E. Kabbaj, B. Olberding and I. Swanson, Springer-Verlag, New York, 2011, 23–46 | MR

[3] D. F. Anderson and P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[4] D. D. Anderson and M. Naseer, “Beck's coloring of a commutative ring”, J. Algebra, 159 (1993), 500–514 | DOI | MR | Zbl

[5] T. Asir and T. Tamilzh Chelvam, “The intersection graph of gamma sets in the total graph of a commutative ring II”, J. Algebra Appl., 12:4 (2013), 1250199, 14 pp. | DOI | MR | Zbl

[6] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Massachusetts, 1969 | MR | Zbl

[7] M. Axtell, J. Coykendall and J. Stickles, “Zero-divisor graphs of polynomial and power series over commutative rings”, Comm. Algebra, 33:6 (2005), 2043–2050 | DOI | MR | Zbl

[8] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer, 2000 | DOI | MR | Zbl

[9] I. Beck, “Coloring of commutative rings”, J. Algebra, 116 (1988), 208–226 | DOI | MR | Zbl

[10] M. Behboodi and Z. Rakeei, “The annihilating-ideal graph of commutative rings I”, J. Algebra Appl., 10:4 (2011), 727–739 | DOI | MR | Zbl

[11] R. Belshoff and J. Chapman, “Planar zero-divisor graphs”, J. Algebra, 316 (2007), 471–480 | DOI | MR | Zbl

[12] I. Chakrabarthy, S. Ghosh, T. K. Mukherjee and M. K. Sen, “Intersection graphs of ideals of rings”, Electronic Notes in Disc. Mathematics, 23 (2005), 23–32 | DOI | MR

[13] N. Deo, Graph theory with applications to Engineering and Computer science, Prentice-Hall of India private limited, New Delhi, 1994

[14] S. H. Jaffari and N. Jaffari Rad, “Planarity of intersection graph of ideals of rings”, Int. Electronic J. Algebra, 8 (2010), 161–166 | MR

[15] T. G. Lucas, “The diameter of a zero-divisor graph”, J. Algebra, 301 (2006), 173–193 | DOI | MR

[16] Z. S. Pucanovic' and Z. Z. Petrovic', “Toroidality of intersection graphs of ideals of commutative rings”, Graphs and Combinatorics, 30 (2014), 707–716 | DOI | MR | Zbl

[17] T. Tamilzh Chelvam and T. Asir, “Intersection graph of gamma sets in the total graph of a commutative ring I”, J. Algebra Appl., 12:4 (2013), 1250198, 18 pp. | DOI | MR

[18] S. Visweswaran and Hiren D. Patel, “On the clique number of the complement of the annihilating ideal graph of a commutative ring”, Beitr. Algebra Geom., 57 (2016), 307–320 | DOI | MR | Zbl

[19] S. Visweswaran and Pravin Vadhel, “Some results on a spanning subgraph of the intersection graph of ideals of a commutative ring”, Mathematics Today, 31 (2015), 1–20