Unimodality polynomials and generalized Pascal triangles
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 1-7

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we show that if $P(x)=\sum_{k=0}^{m}a_{k}x^{k}$ is a polynomial with nondecreasing, nonnegative coefficients, then the coefficients sequence of $P(x^{s}+\cdots +x+1)$ is unimodal for each integer $s\geq 1$. This paper is an extension of Boros and Moll's result “A criterion for unimodality”, who proved that the polynomial $P(x+1)$ is unimodal.
Keywords: unimodality, log-concavity, ordinary multinomials
Mots-clés : Pascal triangle.
@article{ADM_2018_26_1_a1,
     author = {Moussa Ahmia and Hac\`ene Belbachir},
     title = {Unimodality polynomials and generalized {Pascal} triangles},
     journal = {Algebra and discrete mathematics},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a1/}
}
TY  - JOUR
AU  - Moussa Ahmia
AU  - Hacène Belbachir
TI  - Unimodality polynomials and generalized Pascal triangles
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 1
EP  - 7
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a1/
LA  - en
ID  - ADM_2018_26_1_a1
ER  - 
%0 Journal Article
%A Moussa Ahmia
%A Hacène Belbachir
%T Unimodality polynomials and generalized Pascal triangles
%J Algebra and discrete mathematics
%D 2018
%P 1-7
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a1/
%G en
%F ADM_2018_26_1_a1
Moussa Ahmia; Hacène Belbachir. Unimodality polynomials and generalized Pascal triangles. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/ADM_2018_26_1_a1/