Cross-cap singularities counted with sign
Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 257-268

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for computing the algebraic number of cross-cap singularities for mapping from $m$-dimensional compact manifold with boundary $M\subset \mathbb{R}^m$ into $\mathbb{R}^{2m-1}$, $m$ is odd, is presented. As an application, the intersection number of an immersion $g\colon S^{m-1}(r)\to\mathbb{R}^{2m-2}$ is described as the algebraic number of cross-caps of a mapping naturally associated with $g$.
Keywords: cross-cap, immersion, Stiefel manifold, intersection number
Mots-clés : signature.
@article{ADM_2018_25_2_a5,
     author = {Iwona Krzy\.zanowska},
     title = {Cross-cap singularities counted with sign},
     journal = {Algebra and discrete mathematics},
     pages = {257--268},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a5/}
}
TY  - JOUR
AU  - Iwona Krzyżanowska
TI  - Cross-cap singularities counted with sign
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 257
EP  - 268
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a5/
LA  - en
ID  - ADM_2018_25_2_a5
ER  - 
%0 Journal Article
%A Iwona Krzyżanowska
%T Cross-cap singularities counted with sign
%J Algebra and discrete mathematics
%D 2018
%P 257-268
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a5/
%G en
%F ADM_2018_25_2_a5
Iwona Krzyżanowska. Cross-cap singularities counted with sign. Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 257-268. http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a5/