Cross-cap singularities counted with sign
Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 257-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for computing the algebraic number of cross-cap singularities for mapping from $m$-dimensional compact manifold with boundary $M\subset \mathbb{R}^m$ into $\mathbb{R}^{2m-1}$, $m$ is odd, is presented. As an application, the intersection number of an immersion $g\colon S^{m-1}(r)\to\mathbb{R}^{2m-2}$ is described as the algebraic number of cross-caps of a mapping naturally associated with $g$.
Keywords: cross-cap, immersion, Stiefel manifold, intersection number
Mots-clés : signature.
@article{ADM_2018_25_2_a5,
     author = {Iwona Krzy\.zanowska},
     title = {Cross-cap singularities counted with sign},
     journal = {Algebra and discrete mathematics},
     pages = {257--268},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a5/}
}
TY  - JOUR
AU  - Iwona Krzyżanowska
TI  - Cross-cap singularities counted with sign
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 257
EP  - 268
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a5/
LA  - en
ID  - ADM_2018_25_2_a5
ER  - 
%0 Journal Article
%A Iwona Krzyżanowska
%T Cross-cap singularities counted with sign
%J Algebra and discrete mathematics
%D 2018
%P 257-268
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a5/
%G en
%F ADM_2018_25_2_a5
Iwona Krzyżanowska. Cross-cap singularities counted with sign. Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 257-268. http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a5/

[1] M. Golubitsky, V. Guillemin, Stable mappings and their singularities, Springer-Verlag, New York, 1973 | MR | Zbl

[2] G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 3.0.2. A Computer Algebra System for Polynomial Computations

[3] K. Ikegami, O. Saeki, “Cobordism of Morse maps and its applications to map germs”, Math. Proc. Cambridge Philos. Soc., 147:1 (2009), 235–254 | DOI | MR | Zbl

[4] I. Karolkiewicz, A. Nowel, Z. Szafraniec, “An algebraic formula for the intersection number of a polynomial immersion”, J. Pure Appl. Algebra, 214:3 (2010), 269–280 | DOI | MR | Zbl

[5] I. Krzy.{z}anowska, A. Nowel, Mappings into the Stiefel manifold and cross–cap singularities, to appear in Houston Journal of Mathematics, arXiv: 1507.04892[math.AG] | MR

[6] I. Krzy.{z}anowska, Z. Szafraniec, “Polynomial mappings into a Stiefel manifold and immersions”, Houston Journal of Mathematics, 40:3 (2014), 987–1006 | MR | Zbl

[7] R. Lashof, S. Smale, “On the immersion of manifolds in Euclidean space”, Ann. of Math. (2), 68 (1958), 562–583 | DOI | MR | Zbl

[8] L. Nirenberg, Topics in nonlinear functional analysis, Lecture Notes in CIMS at New York Univ., New York, 1974 | MR | Zbl

[9] H. Whitney, “The general type of singularity of a set of $2n-1$ smooth function of $n$ variables”, Duke Math. J., 10 (1943), 161–172 | DOI | MR | Zbl

[10] H. Whitney, “The self-intersections of a smooth $n$-manifold in $2n$-space”, Annals of Mathematics, 45:2 (1944), 220–246 | DOI | MR | Zbl

[11] H. Whitney, “The singularities of a smooth $n$-manifold in $(2n-1)$-space”, Annals of Mathematics, 2nd Ser., 45:2 (1944), 247–293 | DOI | MR | Zbl