Gram matrices and Stirling numbers of a class of diagram algebras,~II
Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 215-256

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper [6], we introduced Gram matrices for the signed partition algebras, the algebra of $\mathbb{Z}_2$-relations and the partition algebras. $(s_1, s_2, r_1, r_2, p_1, p_2)$-Stirling numbers of the second kind are also introduced and their identities are established. In this paper, we prove that the Gram matrix is similar to a matrix which is a direct sum of block submatrices. As a consequence, the semisimplicity of a signed partition algebra is established.
Keywords: signed partition algebras, algebra of $\mathbb{Z}_2$-relations.
Mots-clés : Gram matrices, partition algebras
@article{ADM_2018_25_2_a4,
     author = {N. Karimilla Bi and M. Parvathi},
     title = {Gram matrices and {Stirling} numbers of a class of diagram {algebras,~II}},
     journal = {Algebra and discrete mathematics},
     pages = {215--256},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a4/}
}
TY  - JOUR
AU  - N. Karimilla Bi
AU  - M. Parvathi
TI  - Gram matrices and Stirling numbers of a class of diagram algebras,~II
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 215
EP  - 256
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a4/
LA  - en
ID  - ADM_2018_25_2_a4
ER  - 
%0 Journal Article
%A N. Karimilla Bi
%A M. Parvathi
%T Gram matrices and Stirling numbers of a class of diagram algebras,~II
%J Algebra and discrete mathematics
%D 2018
%P 215-256
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a4/
%G en
%F ADM_2018_25_2_a4
N. Karimilla Bi; M. Parvathi. Gram matrices and Stirling numbers of a class of diagram algebras,~II. Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 215-256. http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a4/