On dual Rickart modules and weak dual Rickart modules
Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 200-214

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring. A right $R$-module $M$ is called $\mathrm{d}$-Rickart if for every endomorphism $\varphi$ of $M$, $\varphi(M)$ is a direct summand of $M$ and it is called $\mathrm{wd}$-Rickart if for every nonzero endomorphism $\varphi$ of $M$, $\varphi(M)$ contains a nonzero direct summand of $M$. We begin with some basic properties of $\mathrm{(w)d}$-Rickart modules. Then we study direct sums of $\mathrm{(w)d}$-Rickart modules and the class of rings for which every finitely generated module is $\mathrm{(w)d}$-Rickart. We conclude by some structure results.
Keywords: dual Rickart modules, weak dual Rickart modules, weak Rickart rings, V-rings.
@article{ADM_2018_25_2_a3,
     author = {Derya Keskin T\"ut\"unc\"u and Nil Orhan Erta\c{s} and Rachid Tribak},
     title = {On dual {Rickart} modules and weak dual {Rickart} modules},
     journal = {Algebra and discrete mathematics},
     pages = {200--214},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a3/}
}
TY  - JOUR
AU  - Derya Keskin Tütüncü
AU  - Nil Orhan Ertaş
AU  - Rachid Tribak
TI  - On dual Rickart modules and weak dual Rickart modules
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 200
EP  - 214
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a3/
LA  - en
ID  - ADM_2018_25_2_a3
ER  - 
%0 Journal Article
%A Derya Keskin Tütüncü
%A Nil Orhan Ertaş
%A Rachid Tribak
%T On dual Rickart modules and weak dual Rickart modules
%J Algebra and discrete mathematics
%D 2018
%P 200-214
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a3/
%G en
%F ADM_2018_25_2_a3
Derya Keskin Tütüncü; Nil Orhan Ertaş; Rachid Tribak. On dual Rickart modules and weak dual Rickart modules. Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 200-214. http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a3/