On $k$-graceful labeling of pendant edge extension of complete bipartite graphs
Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 188-199

Voir la notice de l'article provenant de la source Math-Net.Ru

For any two positive integers $m,n$, we denote the graph $K_{m,n}\odot K_1$ by $G$. Ma Ke-Jie proposed a conjecture [9] that pendant edge extension of a complete bipartite graph is a $k$-graceful graph for $k \ge 2$. In this paper we prove his conjecture for $n\le m n^2+\lfloor\frac{k}{n}\rfloor+ r$.
Keywords: $k$-graceful labeling, complete bipartite graph, corona, $1$-crown.
@article{ADM_2018_25_2_a2,
     author = {Soumya Bhoumik and Sarbari Mitra},
     title = {On $k$-graceful labeling of pendant edge extension of complete bipartite graphs},
     journal = {Algebra and discrete mathematics},
     pages = {188--199},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a2/}
}
TY  - JOUR
AU  - Soumya Bhoumik
AU  - Sarbari Mitra
TI  - On $k$-graceful labeling of pendant edge extension of complete bipartite graphs
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 188
EP  - 199
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a2/
LA  - en
ID  - ADM_2018_25_2_a2
ER  - 
%0 Journal Article
%A Soumya Bhoumik
%A Sarbari Mitra
%T On $k$-graceful labeling of pendant edge extension of complete bipartite graphs
%J Algebra and discrete mathematics
%D 2018
%P 188-199
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a2/
%G en
%F ADM_2018_25_2_a2
Soumya Bhoumik; Sarbari Mitra. On $k$-graceful labeling of pendant edge extension of complete bipartite graphs. Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 188-199. http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a2/