Enumeration of strong dichotomy patterns
Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 165-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of $\mathbb{Z}_{2k}$ with respect to the action of $\operatorname{Aff}(\mathbb{Z}_{2k})$ and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed.
Keywords: strong dichotomy pattern, Pólya-Redfield theory, cyclic sieving.
@article{ADM_2018_25_2_a0,
     author = {Octavio A. Agust{\'\i}n-Aquino},
     title = {Enumeration of strong dichotomy patterns},
     journal = {Algebra and discrete mathematics},
     pages = {165--176},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a0/}
}
TY  - JOUR
AU  - Octavio A. Agustín-Aquino
TI  - Enumeration of strong dichotomy patterns
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 165
EP  - 176
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a0/
LA  - en
ID  - ADM_2018_25_2_a0
ER  - 
%0 Journal Article
%A Octavio A. Agustín-Aquino
%T Enumeration of strong dichotomy patterns
%J Algebra and discrete mathematics
%D 2018
%P 165-176
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a0/
%G en
%F ADM_2018_25_2_a0
Octavio A. Agustín-Aquino. Enumeration of strong dichotomy patterns. Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 165-176. http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a0/

[1] Octavio A. Agustín-Aquino, Extensiones microtonales de contrapunto, Ph.D. thesis, Universidad Nacional Autónoma de México, 2011 | Zbl

[2] Harald Fripertinger, “Enumeration of mosaics”, Discrete Mathematics, 199:1–3 (1999), 49–60 | MR | Zbl

[3] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.4, 2014

[4] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics: a foundation for computer science, ed. 2nd ed., Addison Wesley, Reading, Massachusetts, 1994 | MR | Zbl

[5] Rachel W. Hall and Paul Klingsberg, “Asymmetric rhythms and tiling canons”, American Mathematical Monthly, 113:10 (2006), 887–896 | DOI | MR | Zbl

[6] Donald E. Knuth, “Two notes on notation”, The American Mathematical Monthly, 99:5 (1992), 403–422 | DOI | MR | Zbl

[7] Guerino Mazzola, The topos of music: Geometric logic of concepts, theory, and performance, Birkhäuser Verlag, Basel, 2002 | MR | Zbl

[8] Victor Reiner, Dennis Stanton, and Dennis E. White, “The cyclic sieving phenomenon”, Journal of Combinatorial Theory, Series A, 108:1 (2004), 17–50 | DOI | MR

[9] Dennis E. White, “Classifying patterns by automorphism group: an operator theoretic approach”, Discrete Mathematics, 13:3 (1975), 277–295 | DOI | MR | Zbl

[10] Dennis E. White, “Counting patterns with a given automorphism group”, Proceedings of the American Mathematical Society, 47:1 (1975), 41–44 | DOI | MR | Zbl