Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_25_2_a0, author = {Octavio A. Agust{\'\i}n-Aquino}, title = {Enumeration of strong dichotomy patterns}, journal = {Algebra and discrete mathematics}, pages = {165--176}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a0/} }
Octavio A. Agustín-Aquino. Enumeration of strong dichotomy patterns. Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 165-176. http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a0/
[1] Octavio A. Agustín-Aquino, Extensiones microtonales de contrapunto, Ph.D. thesis, Universidad Nacional Autónoma de México, 2011 | Zbl
[2] Harald Fripertinger, “Enumeration of mosaics”, Discrete Mathematics, 199:1–3 (1999), 49–60 | MR | Zbl
[3] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.4, 2014
[4] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics: a foundation for computer science, ed. 2nd ed., Addison Wesley, Reading, Massachusetts, 1994 | MR | Zbl
[5] Rachel W. Hall and Paul Klingsberg, “Asymmetric rhythms and tiling canons”, American Mathematical Monthly, 113:10 (2006), 887–896 | DOI | MR | Zbl
[6] Donald E. Knuth, “Two notes on notation”, The American Mathematical Monthly, 99:5 (1992), 403–422 | DOI | MR | Zbl
[7] Guerino Mazzola, The topos of music: Geometric logic of concepts, theory, and performance, Birkhäuser Verlag, Basel, 2002 | MR | Zbl
[8] Victor Reiner, Dennis Stanton, and Dennis E. White, “The cyclic sieving phenomenon”, Journal of Combinatorial Theory, Series A, 108:1 (2004), 17–50 | DOI | MR
[9] Dennis E. White, “Classifying patterns by automorphism group: an operator theoretic approach”, Discrete Mathematics, 13:3 (1975), 277–295 | DOI | MR | Zbl
[10] Dennis E. White, “Counting patterns with a given automorphism group”, Proceedings of the American Mathematical Society, 47:1 (1975), 41–44 | DOI | MR | Zbl