Enumeration of strong dichotomy patterns
Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 165-176

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of $\mathbb{Z}_{2k}$ with respect to the action of $\operatorname{Aff}(\mathbb{Z}_{2k})$ and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed.
Keywords: strong dichotomy pattern, Pólya-Redfield theory, cyclic sieving.
@article{ADM_2018_25_2_a0,
     author = {Octavio A. Agust{\'\i}n-Aquino},
     title = {Enumeration of strong dichotomy patterns},
     journal = {Algebra and discrete mathematics},
     pages = {165--176},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a0/}
}
TY  - JOUR
AU  - Octavio A. Agustín-Aquino
TI  - Enumeration of strong dichotomy patterns
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 165
EP  - 176
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a0/
LA  - en
ID  - ADM_2018_25_2_a0
ER  - 
%0 Journal Article
%A Octavio A. Agustín-Aquino
%T Enumeration of strong dichotomy patterns
%J Algebra and discrete mathematics
%D 2018
%P 165-176
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a0/
%G en
%F ADM_2018_25_2_a0
Octavio A. Agustín-Aquino. Enumeration of strong dichotomy patterns. Algebra and discrete mathematics, Tome 25 (2018) no. 2, pp. 165-176. http://geodesic.mathdoc.fr/item/ADM_2018_25_2_a0/