Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_25_1_a5, author = {A. Imani and N. Mehdipoor and A. A. Talebi}, title = {On application of linear algebra in classification cubic $s$-regular graphs of order~$28p$}, journal = {Algebra and discrete mathematics}, pages = {56--72}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a5/} }
TY - JOUR AU - A. Imani AU - N. Mehdipoor AU - A. A. Talebi TI - On application of linear algebra in classification cubic $s$-regular graphs of order~$28p$ JO - Algebra and discrete mathematics PY - 2018 SP - 56 EP - 72 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a5/ LA - en ID - ADM_2018_25_1_a5 ER -
%0 Journal Article %A A. Imani %A N. Mehdipoor %A A. A. Talebi %T On application of linear algebra in classification cubic $s$-regular graphs of order~$28p$ %J Algebra and discrete mathematics %D 2018 %P 56-72 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a5/ %G en %F ADM_2018_25_1_a5
A. Imani; N. Mehdipoor; A. A. Talebi. On application of linear algebra in classification cubic $s$-regular graphs of order~$28p$. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 56-72. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a5/
[1] M. Alaeiyan, M. K. Hosseinipoor, “A classification of the cubic s-regular graphs of orders $12p$ and $12p^{2}$”, Acta Universitatis Apulensis, 2011, 153–158 | MR | Zbl
[2] R. A. Beezer, Sage for Linear Algebra, A Supplement to a First course in Linear Algebra, 2011 Sage web site http://www.sagemath.org
[3] W. Bosma, J. Cannon, Handbook of Magma Function, Sydney University Press, Sydney, 1994
[4] Y. Cheng, J. Oxley, “On weakly symmetric graphs of order twice a prime”, J. Combin. Theory Ser. B, 42 (1987), 196–211 | DOI | MR | Zbl
[5] M. D. E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, 2006 http://www.math.auckland.ac.nz conder/symmcubic2048list.txt
[6] M. D. E. Conder, P. Dobcsányi, “Trivalent symmetric graphs on up to 768 vertices”, J. Combin. Math. Combin. Comput., 40 (2002), 41–63 | MR | Zbl
[7] J. H. Conway, R. T. Curties, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[8] Y. Q. Feng, J. H. Kwak, “Classifying cubic symmetric graphs of order $10p$ or $10p^{2}$”, Sci. China Ser. A, 49 (2006), 300–319 | DOI | MR | Zbl
[9] Y. Q. Feng, J. H. Kwak, “Cubic symmetric graphs of order a small number times a prime or a prime square”, J. Combin. Theory Ser. B, 97 (2007), 627–646 | DOI | MR | Zbl
[10] Y. Q. Feng, J. H. Kwak, “Cubic symmetric graphs of order twice an odd prime-power”, J. Aust. Math. Soc., 81 (2006), 153–164 | DOI | MR | Zbl
[11] Y. Q. Feng, J. H. Kwak, “One-regular cubic graphs of order a small number times a prime or a prime square”, J. Aust. Math. Soc., 76 (2004), 345–356 | DOI | MR | Zbl
[12] Y. Q. Feng, J. H. Kwak, and K. Wang, “Classifying cubic symmetric graphs of order $8p$ or $8p^{2}$”, European J. Combin., 26 (2005), 1033–1052 | DOI | MR | Zbl
[13] Y. Q. Feng, J. H. Kwak and M. Y. Xu, “Cubic s-regular graphs of order $2p^{3}$”, J. Graph Theory, 52 (2006), 341–352 | DOI | MR | Zbl
[14] D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982 | MR | Zbl
[15] J. L. Gross, T. W. Tucker, “Generating all graph coverings by permutation voltage assignments”, Discrete Math., 18 (1977), 273–283 | DOI | MR | Zbl
[16] P. Lorimer, “Vertex-transitive graphs: Symmetric graphs of prime valency”, J. Graph Theory, 8 (1984), 55–68 | DOI | MR | Zbl
[17] A. Malnic, “Group actions, covering and lifts of automorphisms”, Discrete Math., 182 (1998), 203–218 | DOI | MR | Zbl
[18] A. Malnič, D. Marušič, and P. Potočnik, “Elementary abelian covers of graphs”, J. Algebraic Combin., 20 (2004), 71–97 | DOI | MR | Zbl
[19] J. M. Oh, “A classification of cubic s-regular graphs of order $14p$”, Discrete Math., 309 (2009), 2721–2726 | DOI | MR | Zbl
[20] J. M. Oh, “cubic s-regular graphs of orders $12p$, $36p$, $44p$, $52p$, $66p$, $68p$ and $76p$”, J. Appl. Math. Inform., 31 (2013), 651–659 | DOI | MR | Zbl
[21] M. Skoviera, “A construction to the theory of voltage groups”, Discrete Math., 61 (1986), 281–292 | DOI | MR | Zbl
[22] A. A. Talebi, N. Mehdipoor, “Classifying cubic s-regular graphs of orders $22p$, $22p^{2}$”, Algebra Discrete Math., 16 (2013), 293–298 | MR | Zbl
[23] W. T. Tutte, “A family of cubical graphs”, Proc. Cambridge Philos. Soc., 43 (1947), 459–474 | DOI | MR | Zbl
[24] W. T. Tutte, “On the symmetry of cubic graphs”, Canad. J. Math., 11 (1959), 621–624 | DOI | MR | Zbl