On application of linear algebra in classification cubic $s$-regular graphs of order~$28p$
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 56-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph is $s$-regular if its automorphism group acts regularly on the set of $s$-arcs. In this paper, by applying concept linear algebra, we classify the connected cubic s-regular graphs of order $28p$ for each $ s \geq 1 $, and prime $p$.
Keywords: $s$-regular graphs, homology group, Coxeter graph, symmetric graphs, regular covering.
@article{ADM_2018_25_1_a5,
     author = {A. Imani and N. Mehdipoor and A. A. Talebi},
     title = {On application of linear algebra in classification cubic $s$-regular  graphs of order~$28p$},
     journal = {Algebra and discrete mathematics},
     pages = {56--72},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a5/}
}
TY  - JOUR
AU  - A. Imani
AU  - N. Mehdipoor
AU  - A. A. Talebi
TI  - On application of linear algebra in classification cubic $s$-regular  graphs of order~$28p$
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 56
EP  - 72
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a5/
LA  - en
ID  - ADM_2018_25_1_a5
ER  - 
%0 Journal Article
%A A. Imani
%A N. Mehdipoor
%A A. A. Talebi
%T On application of linear algebra in classification cubic $s$-regular  graphs of order~$28p$
%J Algebra and discrete mathematics
%D 2018
%P 56-72
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a5/
%G en
%F ADM_2018_25_1_a5
A. Imani; N. Mehdipoor; A. A. Talebi. On application of linear algebra in classification cubic $s$-regular  graphs of order~$28p$. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 56-72. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a5/

[1] M. Alaeiyan, M. K. Hosseinipoor, “A classification of the cubic s-regular graphs of orders $12p$ and $12p^{2}$”, Acta Universitatis Apulensis, 2011, 153–158 | MR | Zbl

[2] R. A. Beezer, Sage for Linear Algebra, A Supplement to a First course in Linear Algebra, 2011 Sage web site http://www.sagemath.org

[3] W. Bosma, J. Cannon, Handbook of Magma Function, Sydney University Press, Sydney, 1994

[4] Y. Cheng, J. Oxley, “On weakly symmetric graphs of order twice a prime”, J. Combin. Theory Ser. B, 42 (1987), 196–211 | DOI | MR | Zbl

[5] M. D. E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, 2006 http://www.math.auckland.ac.nz conder/symmcubic2048list.txt

[6] M. D. E. Conder, P. Dobcsányi, “Trivalent symmetric graphs on up to 768 vertices”, J. Combin. Math. Combin. Comput., 40 (2002), 41–63 | MR | Zbl

[7] J. H. Conway, R. T. Curties, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[8] Y. Q. Feng, J. H. Kwak, “Classifying cubic symmetric graphs of order $10p$ or $10p^{2}$”, Sci. China Ser. A, 49 (2006), 300–319 | DOI | MR | Zbl

[9] Y. Q. Feng, J. H. Kwak, “Cubic symmetric graphs of order a small number times a prime or a prime square”, J. Combin. Theory Ser. B, 97 (2007), 627–646 | DOI | MR | Zbl

[10] Y. Q. Feng, J. H. Kwak, “Cubic symmetric graphs of order twice an odd prime-power”, J. Aust. Math. Soc., 81 (2006), 153–164 | DOI | MR | Zbl

[11] Y. Q. Feng, J. H. Kwak, “One-regular cubic graphs of order a small number times a prime or a prime square”, J. Aust. Math. Soc., 76 (2004), 345–356 | DOI | MR | Zbl

[12] Y. Q. Feng, J. H. Kwak, and K. Wang, “Classifying cubic symmetric graphs of order $8p$ or $8p^{2}$”, European J. Combin., 26 (2005), 1033–1052 | DOI | MR | Zbl

[13] Y. Q. Feng, J. H. Kwak and M. Y. Xu, “Cubic s-regular graphs of order $2p^{3}$”, J. Graph Theory, 52 (2006), 341–352 | DOI | MR | Zbl

[14] D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982 | MR | Zbl

[15] J. L. Gross, T. W. Tucker, “Generating all graph coverings by permutation voltage assignments”, Discrete Math., 18 (1977), 273–283 | DOI | MR | Zbl

[16] P. Lorimer, “Vertex-transitive graphs: Symmetric graphs of prime valency”, J. Graph Theory, 8 (1984), 55–68 | DOI | MR | Zbl

[17] A. Malnic, “Group actions, covering and lifts of automorphisms”, Discrete Math., 182 (1998), 203–218 | DOI | MR | Zbl

[18] A. Malnič, D. Marušič, and P. Potočnik, “Elementary abelian covers of graphs”, J. Algebraic Combin., 20 (2004), 71–97 | DOI | MR | Zbl

[19] J. M. Oh, “A classification of cubic s-regular graphs of order $14p$”, Discrete Math., 309 (2009), 2721–2726 | DOI | MR | Zbl

[20] J. M. Oh, “cubic s-regular graphs of orders $12p$, $36p$, $44p$, $52p$, $66p$, $68p$ and $76p$”, J. Appl. Math. Inform., 31 (2013), 651–659 | DOI | MR | Zbl

[21] M. Skoviera, “A construction to the theory of voltage groups”, Discrete Math., 61 (1986), 281–292 | DOI | MR | Zbl

[22] A. A. Talebi, N. Mehdipoor, “Classifying cubic s-regular graphs of orders $22p$, $22p^{2}$”, Algebra Discrete Math., 16 (2013), 293–298 | MR | Zbl

[23] W. T. Tutte, “A family of cubical graphs”, Proc. Cambridge Philos. Soc., 43 (1947), 459–474 | DOI | MR | Zbl

[24] W. T. Tutte, “On the symmetry of cubic graphs”, Canad. J. Math., 11 (1959), 621–624 | DOI | MR | Zbl