A way of computing the Hilbert series
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 35-38
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $S=K[x_1,x_2,\ldots,x_n]$ be a standard graded $K$-algebra for any field $K$. Without using any heavy tools of commutative algebra we compute the Hilbert series of graded $S$-module $S/I$, where $I$ is a monomial ideal.
Keywords:
Hilbert series.
Mots-clés : monomial ideal
Mots-clés : monomial ideal
@article{ADM_2018_25_1_a3,
author = {Azeem Haider},
title = {A way of computing the {Hilbert} series},
journal = {Algebra and discrete mathematics},
pages = {35--38},
year = {2018},
volume = {25},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a3/}
}
Azeem Haider. A way of computing the Hilbert series. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 35-38. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a3/
[1] A. Ya. Belov, V. V. Borisenko, V. N. Latyshev, “Monomial algebras”, Journal of Mathematical Sciences, 87:3, November (1997), 3463–3575 | DOI | MR | Zbl
[2] W. Bruns and J. Herzog, Cohen?Macaulay rings, ed. Revised Edition, Cambridge University Press, 1998 | MR | Zbl
[3] M. Stillman and D. Bayer, “Computations of Hilbert functions”, J. Symbolic Computations, 14 (1992), 31–50 | DOI | MR | Zbl
[4] Algebra VI, Encycl. Math. Sci., 57, 1995, 1–196 | MR | Zbl | Zbl