A way of computing the Hilbert series
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 35-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S=K[x_1,x_2,\ldots,x_n]$ be a standard graded $K$-algebra for any field $K$. Without using any heavy tools of commutative algebra we compute the Hilbert series of graded $S$-module $S/I$, where $I$ is a monomial ideal.
Keywords: Hilbert series.
Mots-clés : monomial ideal
@article{ADM_2018_25_1_a3,
     author = {Azeem Haider},
     title = {A way of computing the {Hilbert} series},
     journal = {Algebra and discrete mathematics},
     pages = {35--38},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a3/}
}
TY  - JOUR
AU  - Azeem Haider
TI  - A way of computing the Hilbert series
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 35
EP  - 38
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a3/
LA  - en
ID  - ADM_2018_25_1_a3
ER  - 
%0 Journal Article
%A Azeem Haider
%T A way of computing the Hilbert series
%J Algebra and discrete mathematics
%D 2018
%P 35-38
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a3/
%G en
%F ADM_2018_25_1_a3
Azeem Haider. A way of computing the Hilbert series. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 35-38. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a3/

[1] A. Ya. Belov, V. V. Borisenko, V. N. Latyshev, “Monomial algebras”, Journal of Mathematical Sciences, 87:3, November (1997), 3463–3575 | DOI | MR | Zbl

[2] W. Bruns and J. Herzog, Cohen?Macaulay rings, ed. Revised Edition, Cambridge University Press, 1998 | MR | Zbl

[3] M. Stillman and D. Bayer, “Computations of Hilbert functions”, J. Symbolic Computations, 14 (1992), 31–50 | DOI | MR | Zbl

[4] Algebra VI, Encycl. Math. Sci., 57, 1995, 1–196 | MR | Zbl | Zbl