Characterization of regular convolutions
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 147-156

Voir la notice de l'article provenant de la source Math-Net.Ru

A convolution is a mapping $\mathcal{C}$ of the set $Z^{+}$ of positive integers into the set ${\mathscr{P}}(Z^{+})$ of all subsets of $Z^{+}$ such that, for any $n\in Z^{+}$, each member of $\mathcal{C}(n)$ is a divisor of $n$. If $\mathcal{D}(n)$ is the set of all divisors of $n$, for any $n$, then $\mathcal{D}$ is called the Dirichlet's convolution [2]. If $\mathcal{U}(n)$ is the set of all Unitary(square free) divisors of $n$, for any $n$, then $\mathcal{U}$ is called unitary(square free) convolution. Corresponding to any general convolution $\mathcal{C}$, we can define a binary relation $\leq_{\mathcal{C}}$ on $Z^{+}$ by `$m\leq_{\mathcal{C}}n$ if and only if $ m\in \mathcal{C}(n)$'. In this paper, we present a characterization of regular convolution.
Keywords: semilattice, lattice, prime filter, cover, regular convolution.
Mots-clés : convolution, multiplicative, co-maximal
@article{ADM_2018_25_1_a11,
     author = {Sankar Sagi},
     title = {Characterization of regular convolutions},
     journal = {Algebra and discrete mathematics},
     pages = {147--156},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a11/}
}
TY  - JOUR
AU  - Sankar Sagi
TI  - Characterization of regular convolutions
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 147
EP  - 156
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a11/
LA  - en
ID  - ADM_2018_25_1_a11
ER  - 
%0 Journal Article
%A Sankar Sagi
%T Characterization of regular convolutions
%J Algebra and discrete mathematics
%D 2018
%P 147-156
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a11/
%G en
%F ADM_2018_25_1_a11
Sankar Sagi. Characterization of regular convolutions. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 147-156. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a11/