Characterization of regular convolutions
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 147-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

A convolution is a mapping $\mathcal{C}$ of the set $Z^{+}$ of positive integers into the set ${\mathscr{P}}(Z^{+})$ of all subsets of $Z^{+}$ such that, for any $n\in Z^{+}$, each member of $\mathcal{C}(n)$ is a divisor of $n$. If $\mathcal{D}(n)$ is the set of all divisors of $n$, for any $n$, then $\mathcal{D}$ is called the Dirichlet's convolution [2]. If $\mathcal{U}(n)$ is the set of all Unitary(square free) divisors of $n$, for any $n$, then $\mathcal{U}$ is called unitary(square free) convolution. Corresponding to any general convolution $\mathcal{C}$, we can define a binary relation $\leq_{\mathcal{C}}$ on $Z^{+}$ by `$m\leq_{\mathcal{C}}n$ if and only if $ m\in \mathcal{C}(n)$'. In this paper, we present a characterization of regular convolution.
Keywords: semilattice, lattice, prime filter, cover, regular convolution.
Mots-clés : convolution, multiplicative, co-maximal
@article{ADM_2018_25_1_a11,
     author = {Sankar Sagi},
     title = {Characterization of regular convolutions},
     journal = {Algebra and discrete mathematics},
     pages = {147--156},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a11/}
}
TY  - JOUR
AU  - Sankar Sagi
TI  - Characterization of regular convolutions
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 147
EP  - 156
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a11/
LA  - en
ID  - ADM_2018_25_1_a11
ER  - 
%0 Journal Article
%A Sankar Sagi
%T Characterization of regular convolutions
%J Algebra and discrete mathematics
%D 2018
%P 147-156
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a11/
%G en
%F ADM_2018_25_1_a11
Sankar Sagi. Characterization of regular convolutions. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 147-156. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a11/

[1] E. Cohen, “Arithmetical functions associated with the unitary divisors of an integer”, Math. Z., 74, (1960), 66–80 | DOI | MR | Zbl

[2] W. Narkiewicz, “On a class of arithmetical convolutions”, Collow.Math., 10 (1963), 81–94 | DOI | MR | Zbl

[3] S. Sagi, “Characterization of Prime Filters in $(\mathcal{Z}^{+},\leq_{C})$”, International Journal of Pure and Engineering Mathematics, 3:III (2015) | MR

[4] S. Sagi, “Characterization of Prime Ideals in $(\mathcal{Z}^{+},\leq_{\mathcal{D}})$”, European Journal of Pure and Applied Mathematics, 8:1 (2015), 15–25 | MR | Zbl

[5] S. Sagi, “Co-maximal Filters in $(\mathcal{Z}^{+},\leq_{C})$”, International Journal of Mathematics and its Applications, 3:4-C (2015)

[6] S. Sagi, “Filters in $(\mathcal{Z}^{+},\leq_{\mathcal{C}})$ and $(\mathcal{N},\leq_{\mathcal{C}}^p)$”, Journal of Algebra, Number Theory: Advances and Applications, 11:2 (2014), 93–101

[7] S. Sagi, “Ideals in $(\mathcal{Z}^{+},\leq_{\mathcal{D}})$”, Algebra Discrete Math., 16:1 (2013), 107–115 | MR | Zbl

[8] S. Sagi, “Irreducible elements in $(\mathcal{Z}^{+},\leq_{C})$”, International Journal of Mathematics and its Applications, 3:4-C (2015)

[9] S. Sagi, “Lattice Structures on $\mathcal{Z}^{+}$ Induced by Convolutions”, European Journal of Pure and Applied Mathematics, 4:4 (2011), 424–434 | MR | Zbl

[10] S. Sagi, Lattice Theory of Convolutions, Ph.D. Thesis, Andhra University, Waltair, Visakhapatnam, India, 2010

[11] U. M. Swamy, G. C. Rao, Ramaiah V. Sita, “On a conjecture in a ring of arithmetic functions”, Indian J. Pure Appl. Math., 14:12 (1983) | MR | Zbl

[12] U. M. Swamy, S. Sagi, “Partial orders induced by convolutions”, International journal of Mathematics and Soft Computing, 2:1 (2012), 25–33 | DOI | MR