Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_25_1_a11, author = {Sankar Sagi}, title = {Characterization of regular convolutions}, journal = {Algebra and discrete mathematics}, pages = {147--156}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a11/} }
Sankar Sagi. Characterization of regular convolutions. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 147-156. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a11/
[1] E. Cohen, “Arithmetical functions associated with the unitary divisors of an integer”, Math. Z., 74, (1960), 66–80 | DOI | MR | Zbl
[2] W. Narkiewicz, “On a class of arithmetical convolutions”, Collow.Math., 10 (1963), 81–94 | DOI | MR | Zbl
[3] S. Sagi, “Characterization of Prime Filters in $(\mathcal{Z}^{+},\leq_{C})$”, International Journal of Pure and Engineering Mathematics, 3:III (2015) | MR
[4] S. Sagi, “Characterization of Prime Ideals in $(\mathcal{Z}^{+},\leq_{\mathcal{D}})$”, European Journal of Pure and Applied Mathematics, 8:1 (2015), 15–25 | MR | Zbl
[5] S. Sagi, “Co-maximal Filters in $(\mathcal{Z}^{+},\leq_{C})$”, International Journal of Mathematics and its Applications, 3:4-C (2015)
[6] S. Sagi, “Filters in $(\mathcal{Z}^{+},\leq_{\mathcal{C}})$ and $(\mathcal{N},\leq_{\mathcal{C}}^p)$”, Journal of Algebra, Number Theory: Advances and Applications, 11:2 (2014), 93–101
[7] S. Sagi, “Ideals in $(\mathcal{Z}^{+},\leq_{\mathcal{D}})$”, Algebra Discrete Math., 16:1 (2013), 107–115 | MR | Zbl
[8] S. Sagi, “Irreducible elements in $(\mathcal{Z}^{+},\leq_{C})$”, International Journal of Mathematics and its Applications, 3:4-C (2015)
[9] S. Sagi, “Lattice Structures on $\mathcal{Z}^{+}$ Induced by Convolutions”, European Journal of Pure and Applied Mathematics, 4:4 (2011), 424–434 | MR | Zbl
[10] S. Sagi, Lattice Theory of Convolutions, Ph.D. Thesis, Andhra University, Waltair, Visakhapatnam, India, 2010
[11] U. M. Swamy, G. C. Rao, Ramaiah V. Sita, “On a conjecture in a ring of arithmetic functions”, Indian J. Pure Appl. Math., 14:12 (1983) | MR | Zbl
[12] U. M. Swamy, S. Sagi, “Partial orders induced by convolutions”, International journal of Mathematics and Soft Computing, 2:1 (2012), 25–33 | DOI | MR