Global outer connected domination number of a graph
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 18-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given graph $G=(V,E)$, a dominating set $D \subseteq V(G)$ is said to be an outer connected dominating set if $D=V(G)$ or $G-D$ is connected. The outer connected domination number of a graph $G$, denoted by $\widetilde{\gamma}_c(G)$, is the cardinality of a minimum outer connected dominating set of $G$. A set $S \subseteq V(G)$ is said to be a global outer connected dominating set of a graph $G$ if $S$ is an outer connected dominating set of $G$ and $\overline G$. The global outer connected domination number of a graph $G$, denoted by $\widetilde{\gamma}_{gc}(G)$, is the cardinality of a minimum global outer connected dominating set of $G$. In this paper we obtain some bounds for outer connected domination numbers and global outer connected domination numbers of graphs. In particular, we show that for connected graph $G\ne K_1$, $ \max\{{n-\frac{m+1}{2}}, \frac{5n+2m-n^2-2}{4}\} \leq \widetilde{\gamma}_{gc}(G) \leq \min\{m(G),m(\overline G)\}$. Finally, under the conditions, we show the equality of global outer connected domination numbers and outer connected domination numbers for family of trees.
Keywords: global domination, outer connected domination, global outer connected domination, trees.
@article{ADM_2018_25_1_a1,
     author = {Morteza Alishahi and Doost Ali Mojdeh},
     title = {Global outer connected domination number of a graph},
     journal = {Algebra and discrete mathematics},
     pages = {18--26},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a1/}
}
TY  - JOUR
AU  - Morteza Alishahi
AU  - Doost Ali Mojdeh
TI  - Global outer connected domination number of a graph
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 18
EP  - 26
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a1/
LA  - en
ID  - ADM_2018_25_1_a1
ER  - 
%0 Journal Article
%A Morteza Alishahi
%A Doost Ali Mojdeh
%T Global outer connected domination number of a graph
%J Algebra and discrete mathematics
%D 2018
%P 18-26
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a1/
%G en
%F ADM_2018_25_1_a1
Morteza Alishahi; Doost Ali Mojdeh. Global outer connected domination number of a graph. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 18-26. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a1/

[1] R. C. Brigham and J. R. Carrington, “Global domination”, Domination in graphs, Advanced Topics, eds. T. Haynes, S. Hedetniemi, P. Slater, P. J. Slater, Marcel. Dekker, New York, 1998, 301–318 | MR

[2] J. R. Carrington, Global Domination of Factors of a Graph, Ph.D. Dissertation, University of Central Florida, 1992 | MR | Zbl

[3] J. Cyman, “The outer-connected domination number of a graph”, Australian journal of combinatorics, 38 (2007), 35–46 | MR | Zbl

[4] R. D. Dutton and R. C. Brigham, “On global domination critical graphs”, Discrete Mathematics, 309 (2009), 5894–5897 | DOI | MR | Zbl

[5] T. Haynes, S. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, M. Dekker, Inc., New York, 1997 | MR

[6] M. Krzywkowski, D. A. Mojdeh, M. Raoofi, “Outer-2-independent domination in graphs”, Proceedings Indian Acad. Sci. (Mathematical Sciences), 126:1 (2016), 11–20 | DOI | MR | Zbl

[7] V. R. Kulli, B. Janakiram, “Global nonsplit domination in graphs”, Proceedings of the National Academy of Sciences, India, 2005, 11–12 | MR | Zbl

[8] D. A. Mojdeh, M. Alishahi, Outer independent global dominating set of trees and unicyclic graphs, submitted | MR

[9] D. A. Mojdeh, M. Alishahi, “Trees with the same global domination number as their square”, Australasian Journal of Combinatorics, 66:2 (2016), 288–309 | MR | Zbl

[10] D. B. West, Introduction to Graph Theory, ed. Second Edition, Prentice-Hall, Upper Saddle River, NJ, 2001 | MR