Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_25_1_a0, author = {Lyes Ait-Amrane and Hac\`ene Belbachir}, title = {Periods of {Tribonacci} sequences and elliptic curves}, journal = {Algebra and discrete mathematics}, pages = {1--17}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a0/} }
Lyes Ait-Amrane; Hacène Belbachir. Periods of Tribonacci sequences and elliptic curves. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a0/
[1] H. Belbachir, “Determining the mode for convolution powers of discrete uniform distribution”, Probab. Engrg. Inform. Sci., 25:4 (2011), 469–475 | DOI | MR | Zbl
[2] H. Belbachir, F. Bencherif, “Linear recurrence sequences and powers of a square matrix”, Integers, 6 (2006), A12, 17 pp. | MR | Zbl
[3] H. Belbachir, A. Benmezaï, “A $q$-analogue for bi-$s$-nomial coefficients and generalized Fibonacci sequences”, C. R. Math. Acad. Sci. Paris, 352:3 (2014), 167–171 | DOI | MR | Zbl
[4] H. Belbachir, S. Bouroubi, A. Khelladi, “Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution”, Ann. Math. Inform., 35 (2008), 21–30 | MR | Zbl
[5] H. Belbachir, T. Komatsu, L. Szalay, “Characterization of linear recurrences associated to rays in Pascal's triangle”, Diophantine analysis and related fields (2010), AIP Conf. Proc., 1264, Amer. Inst. Phys., Melville, NY, 2010, 90–99 | DOI | MR | Zbl
[6] H. Belbachir, T. Komatsu, L. Szalay, “Linear recurrences associated to rays in Pascal's triangle and combinatorial identities”, Math. Slovaca., 64:2 (2014), 287–300 | DOI | MR | Zbl
[7] P. R. Brent, “On the periods of generalized Fibonacci recurrences”, Math. Comp., 63:207 (1994), 389–401 | DOI | MR | Zbl
[8] Y. Bugeaud, M. Mignotte, S. Siksek, “Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers”, Ann. of Math. (2), 163:3 (2006), 969–1018 | DOI | MR | Zbl
[9] D. A. Coleman, C. J. Dugan, R. A. McEwen, C. A. Reiter, T. T. Tang, “Periods of $(q,r)$-Fibonacci sequences and elliptic curves”, Fibonacci Quart., 44:1 (2006), 59–70 | MR | Zbl
[10] J. Klaška, “Tribonacci partition formulas modulo $m$”, Acta Math. Sin. (Engl. Ser.), 26:3 (2010), 465–476 | DOI | MR | Zbl
[11] J. Klaška, L. Skula, “Periods of the Tribonacci sequence modulo a prime $p\equiv1\pmod3$”, Fibonacci Quart., 48:3 (2010), 228–235 | MR | Zbl
[12] J. Reynolds, “Perfect powers in elliptic divisibility sequences”, J. Number Theory, 132:5 (2012), 998–1015 | DOI | MR | Zbl
[13] P. Ribenboim, “An algorithm to determine the points with integral coordinates in certain elliptic curves”, J. Number Theory, 74:1 (1999), 19–38 | DOI | MR | Zbl
[14] M. E. Waddill, “Some properties of a generalized Fibonacci sequence modulo $m$”, Fibonacci Quart., 16:4 (1978), 344–353 | MR | Zbl
[15] L. C. Washington, Elliptic curves: Number theory and cryptography, Discrete Mathematics and its Applications, ed. Second edition, Chapman Hall/CRC, Boca Raton, FL, 2008 | DOI | MR | Zbl
[16] C. C. Yalavigi, “Properties of Tribonacci numbers”, Fibonacci Quart., 10:3 (1972), 231–246 | MR | Zbl