Periods of Tribonacci sequences and elliptic curves
Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We will study the periods of Tribonacci sequences associated to elliptic curves. This work is motivated by a paper of Coleman et al. who did it for classical Fibonacci sequences. We are convinced that similar results modulo a deeper work are accessible. Our aim is to explore the Tribonacci case.
Keywords: elliptic curves, periods of sequences, generalized Fibonacci sequences, prime numbers
Mots-clés : Tribonacci sequence, congruences.
@article{ADM_2018_25_1_a0,
     author = {Lyes Ait-Amrane and Hac\`ene Belbachir},
     title = {Periods of {Tribonacci} sequences and elliptic curves},
     journal = {Algebra and discrete mathematics},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a0/}
}
TY  - JOUR
AU  - Lyes Ait-Amrane
AU  - Hacène Belbachir
TI  - Periods of Tribonacci sequences and elliptic curves
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 1
EP  - 17
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a0/
LA  - en
ID  - ADM_2018_25_1_a0
ER  - 
%0 Journal Article
%A Lyes Ait-Amrane
%A Hacène Belbachir
%T Periods of Tribonacci sequences and elliptic curves
%J Algebra and discrete mathematics
%D 2018
%P 1-17
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a0/
%G en
%F ADM_2018_25_1_a0
Lyes Ait-Amrane; Hacène Belbachir. Periods of Tribonacci sequences and elliptic curves. Algebra and discrete mathematics, Tome 25 (2018) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/ADM_2018_25_1_a0/

[1] H. Belbachir, “Determining the mode for convolution powers of discrete uniform distribution”, Probab. Engrg. Inform. Sci., 25:4 (2011), 469–475 | DOI | MR | Zbl

[2] H. Belbachir, F. Bencherif, “Linear recurrence sequences and powers of a square matrix”, Integers, 6 (2006), A12, 17 pp. | MR | Zbl

[3] H. Belbachir, A. Benmezaï, “A $q$-analogue for bi-$s$-nomial coefficients and generalized Fibonacci sequences”, C. R. Math. Acad. Sci. Paris, 352:3 (2014), 167–171 | DOI | MR | Zbl

[4] H. Belbachir, S. Bouroubi, A. Khelladi, “Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution”, Ann. Math. Inform., 35 (2008), 21–30 | MR | Zbl

[5] H. Belbachir, T. Komatsu, L. Szalay, “Characterization of linear recurrences associated to rays in Pascal's triangle”, Diophantine analysis and related fields (2010), AIP Conf. Proc., 1264, Amer. Inst. Phys., Melville, NY, 2010, 90–99 | DOI | MR | Zbl

[6] H. Belbachir, T. Komatsu, L. Szalay, “Linear recurrences associated to rays in Pascal's triangle and combinatorial identities”, Math. Slovaca., 64:2 (2014), 287–300 | DOI | MR | Zbl

[7] P. R. Brent, “On the periods of generalized Fibonacci recurrences”, Math. Comp., 63:207 (1994), 389–401 | DOI | MR | Zbl

[8] Y. Bugeaud, M. Mignotte, S. Siksek, “Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers”, Ann. of Math. (2), 163:3 (2006), 969–1018 | DOI | MR | Zbl

[9] D. A. Coleman, C. J. Dugan, R. A. McEwen, C. A. Reiter, T. T. Tang, “Periods of $(q,r)$-Fibonacci sequences and elliptic curves”, Fibonacci Quart., 44:1 (2006), 59–70 | MR | Zbl

[10] J. Klaška, “Tribonacci partition formulas modulo $m$”, Acta Math. Sin. (Engl. Ser.), 26:3 (2010), 465–476 | DOI | MR | Zbl

[11] J. Klaška, L. Skula, “Periods of the Tribonacci sequence modulo a prime $p\equiv1\pmod3$”, Fibonacci Quart., 48:3 (2010), 228–235 | MR | Zbl

[12] J. Reynolds, “Perfect powers in elliptic divisibility sequences”, J. Number Theory, 132:5 (2012), 998–1015 | DOI | MR | Zbl

[13] P. Ribenboim, “An algorithm to determine the points with integral coordinates in certain elliptic curves”, J. Number Theory, 74:1 (1999), 19–38 | DOI | MR | Zbl

[14] M. E. Waddill, “Some properties of a generalized Fibonacci sequence modulo $m$”, Fibonacci Quart., 16:4 (1978), 344–353 | MR | Zbl

[15] L. C. Washington, Elliptic curves: Number theory and cryptography, Discrete Mathematics and its Applications, ed. Second edition, Chapman Hall/CRC, Boca Raton, FL, 2008 | DOI | MR | Zbl

[16] C. C. Yalavigi, “Properties of Tribonacci numbers”, Fibonacci Quart., 10:3 (1972), 231–246 | MR | Zbl