Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2017_24_2_a9, author = {Mohammad Reza Oboudi}, title = {On the difference between the spectral radius and the maximum degree of graphs}, journal = {Algebra and discrete mathematics}, pages = {302--307}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a9/} }
TY - JOUR AU - Mohammad Reza Oboudi TI - On the difference between the spectral radius and the maximum degree of graphs JO - Algebra and discrete mathematics PY - 2017 SP - 302 EP - 307 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a9/ LA - en ID - ADM_2017_24_2_a9 ER -
Mohammad Reza Oboudi. On the difference between the spectral radius and the maximum degree of graphs. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 302-307. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a9/
[1] R. A. Brualdi, A. J. HoIman, “On the spectral radius of a $(0,1)$ matrix”, Linear Algebra and its Applications, 65 (1985), 133–146 | DOI | MR | Zbl
[2] D. Cao, Y. Hong, “The distribution of eigenvalues of graphs”, Linear Algebra and its Applications, 216 (1995), 211–224 | DOI | MR | Zbl
[3] S. M. Cioabă, “The spectral radius and the maximum degree of irregular graphs”, The Electronic Journal of Combinatorics, 14 (2007), R38 | MR | Zbl
[4] D.Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, London Mathematical Society Student Texts, 75, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[5] K. Ch. Das, P. Kumar, “Some new bounds on the spectral radius of graphs”, Discrete Mathematics, 281 (2004), 149–161 | DOI | MR | Zbl
[6] G. J. Ming, T.Sh.Wang, “On the spectral radius of trees”, Linear Algebra and its Applications, 329 (2001), 1–8 | DOI | MR | Zbl
[7] M. R. Oboudi, “Bipartite graphs with at most six non-zero eigenvalues”, Ars Mathematica Contemporanea, 11 (2016), 315–325 | MR | Zbl
[8] M. R. Oboudi, “Characterization of graphs with exactly two non-negative eigenvalues”, Ars Mathematica Contemporanea, 12 (2017), 271–286 | MR | Zbl
[9] M. R. Oboudi, “Cospectrality of complete bipartite graphs”, Linear and Multilinear Algebra, 64 (2016), 2491–2497 | DOI | MR | Zbl
[10] M. R. Oboudi, “Energy and Seidel energy of graphs”, MATCH Communications in Mathematical and in Computer Chemistry, 75 (2016), 291–303 | MR
[11] M. R. Oboudi, “On the eigenvalues and spectral radius of starlike trees”, Aequationes Mathematicae | DOI
[12] M. R. Oboudi, “On the third largest eigenvalue of graphs”, Linear Algebra and its Applications, 503 (2016), 164–179 | DOI | MR | Zbl
[13] L. Shi, “Bounds on the (Laplacian) spectral radius of graphs”, Linear Algebra and its Applications, 422 (2007), 755–770 | DOI | MR | Zbl
[14] D. Stevanović, “Bounding the largest eigenvalue of trees in terms of the largest vertex degree”, Linear Algebra and its Applications, 360 (2003), 35–42 | DOI | MR | Zbl
[15] D. Stevanović, I. Gutman, M. U. Rehman, “On spectral radius and energy of complete multipartite graphs”, Ars Mathematica Contemporanea, 9 (2015), 109–113 | MR | Zbl
[16] B. Wu, E. Xiao,Y. Hong, “The spectral radius of trees on $k$ pendant vertices”, Linear Algebra and its Applications, 395 (2005), 343–349 | DOI | MR | Zbl
[17] A. Yu, M.Lu, F. Tian, “On the spectral radius of graphs”, Linear Algebra and its Applications, 387 (2004), 41–49 | DOI | MR | Zbl