Lattice rings: an interpretation of $L$-fuzzy rings as habitual algebraic structures
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 274-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce some algebraic structure associated with rings and lattices. It appeared as the result of our new approach to the fuzzy rings and $L$-fuzzy rings where $L$ is a lattice. This approach allows us to employ more convenient language of algebraic structures instead of currently accepted language of functions.
Keywords: ring, lattice, distributive lattice, fuzzy ring
Mots-clés : homomorphism.
@article{ADM_2017_24_2_a7,
     author = {Leonid A. Kurdachenko and Igor Ya. Subbotin and Viktoriia S. Yashchuk},
     title = {Lattice rings: an interpretation of $L$-fuzzy rings as habitual algebraic structures},
     journal = {Algebra and discrete mathematics},
     pages = {274--296},
     year = {2017},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a7/}
}
TY  - JOUR
AU  - Leonid A. Kurdachenko
AU  - Igor Ya. Subbotin
AU  - Viktoriia S. Yashchuk
TI  - Lattice rings: an interpretation of $L$-fuzzy rings as habitual algebraic structures
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 274
EP  - 296
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a7/
LA  - en
ID  - ADM_2017_24_2_a7
ER  - 
%0 Journal Article
%A Leonid A. Kurdachenko
%A Igor Ya. Subbotin
%A Viktoriia S. Yashchuk
%T Lattice rings: an interpretation of $L$-fuzzy rings as habitual algebraic structures
%J Algebra and discrete mathematics
%D 2017
%P 274-296
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a7/
%G en
%F ADM_2017_24_2_a7
Leonid A. Kurdachenko; Igor Ya. Subbotin; Viktoriia S. Yashchuk. Lattice rings: an interpretation of $L$-fuzzy rings as habitual algebraic structures. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 274-296. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a7/

[1] Goguen J. A., “$L$-Fuzzy Sets”, Journal of Math. Analysis and Applications, 18 (1967), 145–174 | DOI | MR | Zbl

[2] Kurdachenko L. A., Grin K. O., Turbay N. A., “On normalizers in fuzzy groups”, Algebra and Discrete Mathematics, 15 (2013), 23–36 | MR | Zbl

[3] Kurdachenko L. A., Otal J., Subbotin I. Ya., “On permutable fuzzy subgroups”, Serdica Mathematical Journal, 39 (2013), 83–102 | MR | Zbl

[4] Kurdachenko L. A., Yashchuk V. S., Subbotin I. Ya., “Lattice groups”, Algebra Discrete Math., 20 (2015), 83–102 | MR

[5] Liu Wang-Jin, “Fuzzy invariant subgroups and fuzzy ideals”, Fuzzy Sets and Systems, 8 (1982), 133–139 | DOI | MR | Zbl

[6] Liu Wang-Jin, “Fuzzy invariant subgroups and fuzzy ideals”, Fuzzy Sets and Systems, 11 (1983), 31–41 | DOI | MR | Zbl

[7] Malik D. S., Mordeson J. N., Fuzzy Commutative algebra, World Scientific, 1998 | MR | Zbl

[8] Mordeson J. N., Cheng S. C., Elements of $L$-algebras, Creighton Univ., 1994

[9] Mordeson J. N., Nair P. S., Fuzzy Mathematics, Springer, 2001

[10] Mordeson J. N., Bhutani K. R., Rosenfeld A., Fuzzy Group Theory, Springer, 2005 | Zbl

[11] Mukherjee T. K. and Sen M. K., “On fuzzy ideals of a ring”, Fuzzy Sets and Systems, 21 (1987), 99–104 | DOI | MR | Zbl

[12] Zadeh L. A., “Fuzzy sets”, Information Control, 8 (1965), 338–353 | DOI | MR | Zbl