On disjoint union of $\mathrm{M}$-graphs
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 262-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a pair $(X,\sigma)$ consisting of a finite tree $X$ and its vertex self-map $\sigma$ one can construct the corresponding Markov graph $\Gamma(X,\sigma)$ which is a digraph that encodes $\sigma$-covering relation between edges in $X$. $\mathrm{M}$-graphs are Markov graphs up to isomorphism. We obtain several sufficient conditions for the disjoint union of $\mathrm{M}$-graphs to be an $\mathrm{M}$-graph and prove that each weak component of $\mathrm{M}$-graph is an $\mathrm{M}$-graph itself.
Keywords: tree maps, Markov graphs, Sharkovsky's theorem.
@article{ADM_2017_24_2_a6,
     author = {Sergiy Kozerenko},
     title = {On disjoint union of $\mathrm{M}$-graphs},
     journal = {Algebra and discrete mathematics},
     pages = {262--273},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a6/}
}
TY  - JOUR
AU  - Sergiy Kozerenko
TI  - On disjoint union of $\mathrm{M}$-graphs
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 262
EP  - 273
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a6/
LA  - en
ID  - ADM_2017_24_2_a6
ER  - 
%0 Journal Article
%A Sergiy Kozerenko
%T On disjoint union of $\mathrm{M}$-graphs
%J Algebra and discrete mathematics
%D 2017
%P 262-273
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a6/
%G en
%F ADM_2017_24_2_a6
Sergiy Kozerenko. On disjoint union of $\mathrm{M}$-graphs. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 262-273. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a6/

[1] C. Bernhardt, “Vertex maps for trees: algebra and periods of periodic orbits”, Discrete Contin. Dyn. Syst., 14 (2006), 399–408 | DOI | MR | Zbl

[2] C-W. Ho and C. Morris, “A graph-theoretic proof of Sharkovsky's theorem on the periodic points of continuous functions”, Pacific J. Math., 96 (1981), 361–370 | DOI | MR | Zbl

[3] S. Kozerenko, “Markov graphs of one-dimensional dynamical systems and their discrete analogues”, Rom. J. Math. Comput. Sci., 6 (2016), 16–24 | MR

[4] S. Kozerenko, “Discrete Markov graphs: loops, fixed points and maps preordering”, J. Adv. Math. Stud., 9 (2016), 99–109 | MR | Zbl

[5] S. Kozerenko, “On the abstract properties of Markov graphs for maps on trees”, Mat. Bilten, 41 (2017), 5–21

[6] V. A. Pavlenko, “Number of digraphs of periodic points of a continuous mapping of an interval into itself”, Ukrainian Math. J., 39 (1987), 481–486 (Russian) | DOI | MR | Zbl

[7] V. A. Pavlenko, “Periodic digraphs and their properties”, Ukrainian Math. J., 40 (1988), 455–458 (Russian) | DOI | MR | Zbl

[8] V. A. Pavlenko, “On characterization of periodic digraphs”, Cybernet. Systems Anal., 25 (1989), 49–54 (Russian) | DOI | MR

[9] A. N. Sharkovsky, “Coexistence of the cycles of a continuous mapping of the line into itself”, Ukrainian Math. J., 16 (1964), 61–71 (Russian) | MR

[10] P. D. Straffin, “Periodic points of continuous functions”, Math. Mag., 51 (1978), 99–105 | DOI | MR | Zbl