On disjoint union of $\mathrm{M}$-graphs
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 262-273

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a pair $(X,\sigma)$ consisting of a finite tree $X$ and its vertex self-map $\sigma$ one can construct the corresponding Markov graph $\Gamma(X,\sigma)$ which is a digraph that encodes $\sigma$-covering relation between edges in $X$. $\mathrm{M}$-graphs are Markov graphs up to isomorphism. We obtain several sufficient conditions for the disjoint union of $\mathrm{M}$-graphs to be an $\mathrm{M}$-graph and prove that each weak component of $\mathrm{M}$-graph is an $\mathrm{M}$-graph itself.
Keywords: tree maps, Markov graphs, Sharkovsky's theorem.
@article{ADM_2017_24_2_a6,
     author = {Sergiy Kozerenko},
     title = {On disjoint union of $\mathrm{M}$-graphs},
     journal = {Algebra and discrete mathematics},
     pages = {262--273},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a6/}
}
TY  - JOUR
AU  - Sergiy Kozerenko
TI  - On disjoint union of $\mathrm{M}$-graphs
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 262
EP  - 273
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a6/
LA  - en
ID  - ADM_2017_24_2_a6
ER  - 
%0 Journal Article
%A Sergiy Kozerenko
%T On disjoint union of $\mathrm{M}$-graphs
%J Algebra and discrete mathematics
%D 2017
%P 262-273
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a6/
%G en
%F ADM_2017_24_2_a6
Sergiy Kozerenko. On disjoint union of $\mathrm{M}$-graphs. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 262-273. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a6/