Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2017_24_2_a5, author = {R. Kala and A. Mallika and K. Selvakumar}, title = {The edge chromatic number of $\Gamma_{I}(R)$}, journal = {Algebra and discrete mathematics}, pages = {250--261}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a5/} }
R. Kala; A. Mallika; K. Selvakumar. The edge chromatic number of $\Gamma_{I}(R)$. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 250-261. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a5/
[1] S. Akbari, H. R. Maimani and S. Yassemi, “When a zero-divisor graph is planar or a complete $r$-partite graph”, J. Algebra, 270 (2003), 169–180 | DOI | MR | Zbl
[2] S. Akbari and A. Mohammadian, “On the zero-divisor graph of a commutative ring”, J. Algebra, 274 (2004), 847–855 | DOI | MR | Zbl
[3] D. F. Anderson, A. Frazier, A. Lauve, P. S. Livingston, “The zero-divisor graph of a commutative ring, II”, Lecture Notes in Pure and Appl. Math., 220, Marcel Dekker, New York, 2001, 61–72 | MR | Zbl
[4] D. F. Anderson, P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl
[5] D. D. Anderson, M. Naseer, “Beck's coloring of a commutative ring”, J. Algebra, 159 (1993), 500–514 | DOI | MR | Zbl
[6] M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison Wesley, Reading, MA, 1969 | MR | Zbl
[7] I. Beck, “Coloring of commutative rings”, J. Algebra, 116 (1988), 208–226 | DOI | MR | Zbl
[8] F. DeMeyer, T. McKenzie, K. Schneider, “The zero-divisor graph of a commutative semigroup”, Semigroup Forum, 65 (2002), 206–214 | DOI | MR | Zbl
[9] Gary Chartrand and Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill, 2006
[10] A. Mallika, R. Kala and K. Selvakumar, “A note on the ideal-based zero-divisor graph of a commutative ring”, Discussiones Mathematicae – General Algebra and Applications, 37 (2017), 177–187 | DOI | MR
[11] H. R. Maimani, M. R. Pournaki and S. Yassemi, “Zero-divisor graph with respect to an ideal”, Comm. Algebra, 34:3 (2006), 923–929 | DOI | MR | Zbl
[12] S. P. Redmond, Generalizations of the Zero-Divisor Graph of a Ring, Doctoral Dissertation, The University of Tennessee, Knoxville, TN, 2001 | MR | Zbl
[13] S. P. Redmond, “The zero-divisor graph of a non-commutative ring”, Internat. J. Commutative Rings, 1:4 (2002), 203–211 | MR
[14] S. P. Redmond, “An ideal-based zero-divisor graph of a commutative ring”, Comm. Algebra, 31:9 (2003), 4425–4443 | DOI | MR | Zbl
[15] S. P. Redmond, “Structure in the zero-divisor graph of a non commutative ring”, Houston J. Math., 30:2 (2004), 345–355 | MR | Zbl
[16] H. P. Yap, Some Topics in Graph Theory, London Math. Soc. Lecture Note Ser., 108, 1986 | MR | Zbl