The edge chromatic number of $\Gamma_{I}(R)$
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 250-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a commutative ring $R$ and an ideal $I$ of $R$, the ideal-based zero-divisor graph is the undirected graph $\Gamma_{I}(R)$ with vertices $\{x\in R-I\colon xy\in I \text{ for some } y\in R-I\}$, where distinct vertices $x$ and $y$ are adjacent if and only if $xy\in I$. In this paper, we discuss the nature of the edges of $\Gamma_{I}(R)$. We also find the edge chromatic number for the graph $\Gamma_{I}(R)$.
Keywords: zero-divisor graph, chromatic number, ideal-based zero-divisor graph.
@article{ADM_2017_24_2_a5,
     author = {R. Kala and A. Mallika and K. Selvakumar},
     title = {The edge chromatic number of $\Gamma_{I}(R)$},
     journal = {Algebra and discrete mathematics},
     pages = {250--261},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a5/}
}
TY  - JOUR
AU  - R. Kala
AU  - A. Mallika
AU  - K. Selvakumar
TI  - The edge chromatic number of $\Gamma_{I}(R)$
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 250
EP  - 261
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a5/
LA  - en
ID  - ADM_2017_24_2_a5
ER  - 
%0 Journal Article
%A R. Kala
%A A. Mallika
%A K. Selvakumar
%T The edge chromatic number of $\Gamma_{I}(R)$
%J Algebra and discrete mathematics
%D 2017
%P 250-261
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a5/
%G en
%F ADM_2017_24_2_a5
R. Kala; A. Mallika; K. Selvakumar. The edge chromatic number of $\Gamma_{I}(R)$. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 250-261. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a5/

[1] S. Akbari, H. R. Maimani and S. Yassemi, “When a zero-divisor graph is planar or a complete $r$-partite graph”, J. Algebra, 270 (2003), 169–180 | DOI | MR | Zbl

[2] S. Akbari and A. Mohammadian, “On the zero-divisor graph of a commutative ring”, J. Algebra, 274 (2004), 847–855 | DOI | MR | Zbl

[3] D. F. Anderson, A. Frazier, A. Lauve, P. S. Livingston, “The zero-divisor graph of a commutative ring, II”, Lecture Notes in Pure and Appl. Math., 220, Marcel Dekker, New York, 2001, 61–72 | MR | Zbl

[4] D. F. Anderson, P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[5] D. D. Anderson, M. Naseer, “Beck's coloring of a commutative ring”, J. Algebra, 159 (1993), 500–514 | DOI | MR | Zbl

[6] M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison Wesley, Reading, MA, 1969 | MR | Zbl

[7] I. Beck, “Coloring of commutative rings”, J. Algebra, 116 (1988), 208–226 | DOI | MR | Zbl

[8] F. DeMeyer, T. McKenzie, K. Schneider, “The zero-divisor graph of a commutative semigroup”, Semigroup Forum, 65 (2002), 206–214 | DOI | MR | Zbl

[9] Gary Chartrand and Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill, 2006

[10] A. Mallika, R. Kala and K. Selvakumar, “A note on the ideal-based zero-divisor graph of a commutative ring”, Discussiones Mathematicae – General Algebra and Applications, 37 (2017), 177–187 | DOI | MR

[11] H. R. Maimani, M. R. Pournaki and S. Yassemi, “Zero-divisor graph with respect to an ideal”, Comm. Algebra, 34:3 (2006), 923–929 | DOI | MR | Zbl

[12] S. P. Redmond, Generalizations of the Zero-Divisor Graph of a Ring, Doctoral Dissertation, The University of Tennessee, Knoxville, TN, 2001 | MR | Zbl

[13] S. P. Redmond, “The zero-divisor graph of a non-commutative ring”, Internat. J. Commutative Rings, 1:4 (2002), 203–211 | MR

[14] S. P. Redmond, “An ideal-based zero-divisor graph of a commutative ring”, Comm. Algebra, 31:9 (2003), 4425–4443 | DOI | MR | Zbl

[15] S. P. Redmond, “Structure in the zero-divisor graph of a non commutative ring”, Houston J. Math., 30:2 (2004), 345–355 | MR | Zbl

[16] H. P. Yap, Some Topics in Graph Theory, London Math. Soc. Lecture Note Ser., 108, 1986 | MR | Zbl