Embeddings of (proper) power graphs of finite groups
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 221-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

The (proper) power graph of a group is a graph whose vertex set is the set of all (nontrivial) elements of the group and two distinct vertices are adjacent if one is a power of the other. Various kinds of planarity of (proper) power graphs of groups are discussed.
Keywords: power graph, planar graph, outerplanar graph, ring graph, $1$-planar graph, almost planar graph, toroidal graph, projective graph.
Mots-clés : maximal planar graph
@article{ADM_2017_24_2_a3,
     author = {A. Doostabadi and M. Farrokhi D.G.},
     title = {Embeddings of (proper) power graphs of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {221--234},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a3/}
}
TY  - JOUR
AU  - A. Doostabadi
AU  - M. Farrokhi D.G.
TI  - Embeddings of (proper) power graphs of finite groups
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 221
EP  - 234
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a3/
LA  - en
ID  - ADM_2017_24_2_a3
ER  - 
%0 Journal Article
%A A. Doostabadi
%A M. Farrokhi D.G.
%T Embeddings of (proper) power graphs of finite groups
%J Algebra and discrete mathematics
%D 2017
%P 221-234
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a3/
%G en
%F ADM_2017_24_2_a3
A. Doostabadi; M. Farrokhi D.G. Embeddings of (proper) power graphs of finite groups. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 221-234. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a3/

[1] D. Archdeacon, “A Kuratowski theorem for the projective plane”, J. Graph Theory, 5 (1981), 243–246 | DOI | MR | Zbl

[2] J. Battle, F. Harary, Y. Kodama and J. W. T. Youngs, “Additivity of the genus of a graph”, Bull. Amer. Math. Soc., 68 (1962), 565–568 | DOI | MR | Zbl

[3] R. Brandl and W. J. Shi, “Finite groups whose element orders are consecutive integers”, J. Algebra, 143:2 (1991), 388–400 | DOI | MR | Zbl

[4] P. J. Cameron, “The power graph of a finite group, II”, J. Group Theory, 13:6 (2010), 779–783 | DOI | MR | Zbl

[5] P. J. Cameron and S. Ghosh, “The power graph of a finite group”, Discrete Math., 311 (2011), 1220–1222 | DOI | MR | Zbl

[6] I. Chakrabarty, S. Ghosh and M. K. Sen, “Undirected power graphs of semigroups”, Semigroup Forum, 78 (2009), 410–426 | DOI | MR | Zbl

[7] G. Chartrand and F. Harary, “Planar permutation graphs”, Ann. Inst. Henri Poincaré Probab. Stat., 3:4 (1967), 433–438 | MR | Zbl

[8] S. Chattopadhyay and P. Panigrahi, “Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups”, Algebra Discrete Math., 18:1 (2014), 42–49 | MR | Zbl

[9] A. Doostabadi, A. Erfanian and A. Jafarzadeh, “Some results on the power graph of finite groups”, ScienceAsia, 41 (2015), 73–78 | DOI

[10] A. Doostabadi, A. Erfanian and M. Farrokhi D. G., “On power graphs of finite groups with forbidden induced subgraphs”, Indag. Math., 25:3 (2014), 525–533 | DOI | MR | Zbl

[11] A. Doostabadi and M. Farrokhi D. G., “On the connectivity of proper power graphs of finite groups”, Comm. Algebra, 43:10 (2015), 4305–4319 | DOI | MR | Zbl

[12] I. Fabrici and T. Madaras, “The structure of $1$-planar graphs”, Discrete Math., 307 (2007), 854–865 | DOI | MR | Zbl

[13] The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.6.4, 2013 http://www.gap-system.org/

[14] H. H. Glover, J. P. Huneke and C. S. Wang, “$103$ Graphs that are irreducible for the projective plane”, Combinatorial Theory, 27 (1979), 332–370 | DOI | MR | Zbl

[15] I. Gitler, E. Reyes and R. H. Villarreal, “Ring graphs and complete intersection toric ideals”, Discrete Math., 310 (2010), 430–441 | DOI | MR | Zbl

[16] N. D. Gupta and V. D. Mazurov, “On groups with small orders of elements”, Bull. Austral. Math. Soc., 60:2 (1999), 197–205 | DOI | MR | Zbl

[17] T. L. Huang and W. J. Shi, “Finite groups all of whose element orders are of prime power except one”, J. Southwest Normal Univ., 20:6 (1995), 610–617 (Chinese)

[18] K. Kuratowski, “Sur le problème des courbes gauches en topologie”, Fund. Math., 15 (1930), 271–283 | DOI | Zbl

[19] F. Levi and B. L. van der Waerden, “Uber eine besondere klasse von gruppen”, Abh. Math. Sem. Univ. Hamburg, 9 (1932), 154–158 | DOI | MR

[20] D. V. Lytkina, “Structure of a group with elements of order at most $4$”, Siberian Math. J., 48:2 (2007), 283–287 | DOI | MR | Zbl

[21] V. D. Mazurov, “Groups of exponent $60$ with prescribed orders of elements”, Algebra Logic, 39:3 (2000), 189–198 | DOI | MR | Zbl

[22] M. Mirzargar, A. R. Ashrafi and M. J. Nadjafi-Arani, “On the power graph of a finite group”, Filomat, 26:6 (2012), 1201–1208 | DOI | MR | Zbl

[23] E. Neufeld and W. Myrvold, “Practical toroidality testing”, 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1997, 574–580 | MR | Zbl

[24] B. H. Neumann, “Groups whose elements have bounded orders”, J. London Math. Soc., 12 (1937), 195–198 | DOI | MR

[25] G. Ringel, “Das geschlecht des vollständingen paaren graphen”, Abh. Math. Sem. Univ., 28 (1965), 139–150 | DOI | MR | Zbl

[26] G. Ringel, “Solution of the Heawood map-coloring problem”, Proc. Nat. Acad. Sci. USA, 60 (1968), 438–445 | DOI | MR | Zbl

[27] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Spring-Verlag, New York, 1996 | MR

[28] W. J. Shi and C. Yang, “A class of special finite groups”, Chinese Science Bull., 37:3 (1992), 252–253

[29] W. J. Shi and W. Z. Yang, “A new characterization of $A_5$ and the finite groups in which every non-identity element has prime order”, J. Southwest-China Teachers College, 9:1 (1984), 36–40 (Chinese)

[30] C. Yang, S. G. Wang and X. J. Zhao, “Finite groups with $\pi_e(G)=\{1,2,3,5,6\}$”, J. Eng. Math., 17:1 (2000), 105–108 | MR | Zbl

[31] A. Kh. Zhurtov and V. D. Mazurov, “On recognition of the finite simple groups $L_2(2^m)$ in the class of all groups”, Siberian Math. J., 40:1 (1999), 62–64 | DOI | MR | Zbl