Some remarks on $\Phi$-sharp modules
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 209-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to introduce some new classes of modules which is closely related to the classes of sharp modules, pseudo-Dedekind modules and $TV$-modules. In this paper we introduce the concepts of $\Phi$-sharp modules, $\Phi$-pseudo-Dedekind modules and $\Phi$-$TV$-modules. Let $R$ be a commutative ring with identity and set $\mathbb{H}=\lbrace M\mid M$ is an $R$-module and $\operatorname{Nil}(M)$ is a divided prime submodule of $M\rbrace$. For an $R$-module $M\in\mathbb{H}$, set $T=(R\setminus Z(M))\cap (R\setminus Z(R))$, $\mathfrak{T}(M)=T^{-1}(M)$ and $P:=(\operatorname{Nil}(M):_{R}M)$. In this case the mapping $\Phi\colon\mathfrak{T}(M)\longrightarrow M_{P}$ given by $\Phi(x/s)=x/s$ is an $R$-module homomorphism. The restriction of $\Phi$ to $M$ is also an $R$-module homomorphism from $M$ in to $M_{P}$ given by $\Phi(m/1)=m/1$ for every $m\in M$. An $R$-module $M\in \mathbb{H}$ is called a $\Phi$-sharp module if for every nonnil submodules $N,L$ of $M$ and every nonnil ideal $I$ of $R$ with $N\supseteq IL$, there exist a nonnil ideal $I'\supseteq I$ of $R$ and a submodule $L'\supseteq L$ of $M$ such that $N=I'L'$. We prove that Many of the properties and characterizations of sharp modules may be extended to $\Phi$-sharp modules, but some can not.
Keywords: $\Phi$-sharp module, $\Phi$-pseudo-Dedekind module, $\Phi$-Dedekind module, $\Phi$-$TV$ module.
@article{ADM_2017_24_2_a2,
     author = {Ahmad Yousefian Darani and Mahdi Rahmatinia},
     title = {Some remarks on $\Phi$-sharp modules},
     journal = {Algebra and discrete mathematics},
     pages = {209--220},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a2/}
}
TY  - JOUR
AU  - Ahmad Yousefian Darani
AU  - Mahdi Rahmatinia
TI  - Some remarks on $\Phi$-sharp modules
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 209
EP  - 220
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a2/
LA  - en
ID  - ADM_2017_24_2_a2
ER  - 
%0 Journal Article
%A Ahmad Yousefian Darani
%A Mahdi Rahmatinia
%T Some remarks on $\Phi$-sharp modules
%J Algebra and discrete mathematics
%D 2017
%P 209-220
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a2/
%G en
%F ADM_2017_24_2_a2
Ahmad Yousefian Darani; Mahdi Rahmatinia. Some remarks on $\Phi$-sharp modules. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 209-220. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a2/

[1] M. M. Ali, “Some remarks on generalized $\mathrm{GCD}$ domains”, Comm. Algebra, 36 (2008), 142–164 | DOI | MR | Zbl

[2] M. M. Ali, “Invertibility of multiplication modules $\Pi$”, New Zealand J. Math., 39 (2009), 45–64 | MR | Zbl

[3] M. M. Ali, “Invertibility of multiplication modules III”, New Zealand J. Math., 39 (2009), 139–213 | MR

[4] M. M. Ali, “Idempotent and nilpotent submodules of multiplication modules”, Comm. Algebra, 36 (2008), 4620–4642 | DOI | MR | Zbl

[5] R. Ameri, “On the prime submodules of multiplication modules”, IJMMS, 27 (2003), 1715–1724 | MR | Zbl

[6] D. F. Anderson and A. Badawi, “On $\phi$-Prüfer rings and $\phi$-Bezout rings”, Houston J. Math., 2 (2004), 331–343 | MR | Zbl

[7] D. F. Anderson and A. Badawi, “On $\phi$-Dedekind rings and $\phi$-Krull rings”, Houston J. Math., 4 (2005), 1007–1022 | MR | Zbl

[8] D. F. Anderson and V. Barucci and D. D. Dobbs, “Coherent Mori domain and the principal ideal theorem”, Comm. Algebra, 15 (1987), 1119–1156 | DOI | MR | Zbl

[9] A. Badawi, “On $\phi$-pseudo- valuation rings”, Lecture Notes Pure Appl. Math., 205, Marcel Dekker, New York–Basel, 1999, 101–110 | MR | Zbl

[10] A. Badawi, “On $\phi$-pseudo-valuation rings II”, Houston J. Math., 26 (2000), 473–480 | MR | Zbl

[11] A. Badawi and Thomas G. Lucas, “On $\phi$-Mori rings”, Houston J. Math., 32 (2006), 1–32 | MR | Zbl

[12] A. Badawi, “On divided commutative rings”, Comm. Algebra, 27 (1999), 1465–1474 | DOI | MR | Zbl

[13] A. Badawi, “On $\phi$-chained rings and $\phi$-pseudo-valuation rings”, Houston J. Math., 27 (2001), 725–736 | MR | Zbl

[14] A. Badawi, “On divided rings and $\phi$-pseudo-valuation rings”, International J of Commutative Rings, 1 (2002), 51–60 | MR | Zbl

[15] A. Badawi, “On nonnil-Noetherian rings”, Comm. Algebra, 31 (2003), 1669–1677 | DOI | MR | Zbl

[16] A. Barnard, “Multiplication modules”, J. Algebra, 71 (1981), 174–178 | DOI | MR | Zbl

[17] Z. El-Bast and P. F. Smith, “Multiplication modules”, Comm. Algebra, 16 (1998), 755–799 | DOI | MR

[18] P. M. Cohn, “Bezout rings and their subrings”, Proc. Cambridge Philos. Soc., 64 (1968), 251–264 | DOI | MR | Zbl

[19] D. E. Dobbs, “Divided rings and going-down”, Pacific J. Math., 67 (1976), 353–363 | DOI | MR | Zbl

[20] A. G. Naoum and F. H. Al-Alwan, “Dedekind modules”, Comm. Algebra, 24 (1996), 225–230 | MR

[21] P. F. Smith, “Some remarks on multiplication modules”, Arch. der Math., 50 (1988), 223–235 | DOI | MR | Zbl

[22] A. Youseffian Darani, Nonnil-Noetherian modules over commutative rings, submitted | MR

[23] A. Youseffian Darani and M. Rahmatinia, On sharp modules over commutative rings, submitted | MR

[24] A. Youseffian Darani and M. Rahmatinia, On $\Phi$-Mori modules, submitted | MR

[25] A. Youseffian Darani and M. Rahmatinia, On $\Phi$-sharp rings, submitted | MR

[26] A. Youseffian Darani and S. Motmaen, On $\Phi$-Dedekind, $\phi$-Prüfer and $\Phi$-Bezout modules, submitted | MR

[27] A. Zaheer, D. Teberiu and E. Mihai, “A schreier domain type condition”, Bull. Math. Soc. Roumania, 55:3 (2012), 241–247 | Zbl