Some remarks on $\Phi$-sharp modules
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 209-220

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to introduce some new classes of modules which is closely related to the classes of sharp modules, pseudo-Dedekind modules and $TV$-modules. In this paper we introduce the concepts of $\Phi$-sharp modules, $\Phi$-pseudo-Dedekind modules and $\Phi$-$TV$-modules. Let $R$ be a commutative ring with identity and set $\mathbb{H}=\lbrace M\mid M$ is an $R$-module and $\operatorname{Nil}(M)$ is a divided prime submodule of $M\rbrace$. For an $R$-module $M\in\mathbb{H}$, set $T=(R\setminus Z(M))\cap (R\setminus Z(R))$, $\mathfrak{T}(M)=T^{-1}(M)$ and $P:=(\operatorname{Nil}(M):_{R}M)$. In this case the mapping $\Phi\colon\mathfrak{T}(M)\longrightarrow M_{P}$ given by $\Phi(x/s)=x/s$ is an $R$-module homomorphism. The restriction of $\Phi$ to $M$ is also an $R$-module homomorphism from $M$ in to $M_{P}$ given by $\Phi(m/1)=m/1$ for every $m\in M$. An $R$-module $M\in \mathbb{H}$ is called a $\Phi$-sharp module if for every nonnil submodules $N,L$ of $M$ and every nonnil ideal $I$ of $R$ with $N\supseteq IL$, there exist a nonnil ideal $I'\supseteq I$ of $R$ and a submodule $L'\supseteq L$ of $M$ such that $N=I'L'$. We prove that Many of the properties and characterizations of sharp modules may be extended to $\Phi$-sharp modules, but some can not.
Keywords: $\Phi$-sharp module, $\Phi$-pseudo-Dedekind module, $\Phi$-Dedekind module, $\Phi$-$TV$ module.
@article{ADM_2017_24_2_a2,
     author = {Ahmad Yousefian Darani and Mahdi Rahmatinia},
     title = {Some remarks on $\Phi$-sharp modules},
     journal = {Algebra and discrete mathematics},
     pages = {209--220},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a2/}
}
TY  - JOUR
AU  - Ahmad Yousefian Darani
AU  - Mahdi Rahmatinia
TI  - Some remarks on $\Phi$-sharp modules
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 209
EP  - 220
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a2/
LA  - en
ID  - ADM_2017_24_2_a2
ER  - 
%0 Journal Article
%A Ahmad Yousefian Darani
%A Mahdi Rahmatinia
%T Some remarks on $\Phi$-sharp modules
%J Algebra and discrete mathematics
%D 2017
%P 209-220
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a2/
%G en
%F ADM_2017_24_2_a2
Ahmad Yousefian Darani; Mahdi Rahmatinia. Some remarks on $\Phi$-sharp modules. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 209-220. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a2/