Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2017_24_2_a12, author = {Chia Zargeh}, title = {A note on simplicity of contact {Lie} algebras over~$\operatorname{GF}(2)$}, journal = {Algebra and discrete mathematics}, pages = {331--336}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a12/} }
Chia Zargeh. A note on simplicity of contact Lie algebras over~$\operatorname{GF}(2)$. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 331-336. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a12/
[1] T. Brough, B. Eick, Graded Lie algebras of Cartan type in characteristic 2, arXiv: 1510.02289[math.RA]
[2] G. Brown, “Families of simple Lie algebras of characteristic two”, Comm. Algebra, 23:3 (1995), 941–954 | DOI | MR | Zbl
[3] B. Eick, “Some new simple Lie algebras in characteristic 2”, J. Symbolic Comput., 45:9 (2010), 943–951 | DOI | MR | Zbl
[4] G. Hiss, “Die adjungierten Darstellungen der Chevalley-Gruppen”, Arch. Math., 42 (1984), 408–416 | DOI | MR | Zbl
[5] G. M. D. Hogeweij, “Almost-classical Lie algebras. I”, Nederl. Akad. Wetensch. Indag. Math., 44:4 (1982), 441–452 ; “Almost-classical Lie algebras. II”, 453–460 | DOI | MR | Zbl
[6] L. Lin, “Lie algebras $K(\mathbb{F},\mu_i)$ of Cartan type of characteristic $p=2$ and their subalgebras”, J. East China Norm. Univ. Natur. Sci. Ed., 1 (1988), 16–23 | MR | Zbl
[7] A. Premet, H. Strade, “Classification of finite dimensional simple Lie algebras in prime characteristics”, Representations of algebraic groups, quantum groups, and Lie algebras, Contemp. Math., 413, Amer. Math. Soc., Providence, RI, 2006, 185–214 | DOI | MR | Zbl
[8] S. M. Skryabin, “Modular Lie algebras of Cartan type over algebraically non-closed fields. II”, Comm. Algebra, 24:4 (1995), 1403–1453 | DOI | MR
[9] H. Strade, Simple Lie algebras over fields of positive characteristics, v. I, de Gruyter Exposition in Mathematics, 38, Structure theory, Walter de Gruyter Co., Berlin, 2004 | DOI | MR
[10] H. Strade and R. Fransteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, 116, Marcel Dekker Inc., New York, 1988 | MR | Zbl
[11] The GAP Group, GAP — Groups, Algorithms and Programming. Version 4.4., 2015 http://www.gap-system.org