A note on simplicity of contact Lie algebras over~$\operatorname{GF}(2)$
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 331-336.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we investigate the structure of contact Lie algebras when the ground field is of characteristic 2. In order to describe the simple constituent of contact Lie algebras, by using computer algebra system, GAP, we make a conjecture which says that the quotient algebra of contact Lie algebra by its Nilradical is simple and there exists an isomorphism among this constituents and Witt Lie algebras and Hamilton Lie algebras.
Keywords: contact Lie algebras, Hamilton Lie algebras, Witt Lie algebras.
Mots-clés : simple Lie algebras
@article{ADM_2017_24_2_a12,
     author = {Chia Zargeh},
     title = {A note on simplicity of contact {Lie} algebras over~$\operatorname{GF}(2)$},
     journal = {Algebra and discrete mathematics},
     pages = {331--336},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a12/}
}
TY  - JOUR
AU  - Chia Zargeh
TI  - A note on simplicity of contact Lie algebras over~$\operatorname{GF}(2)$
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 331
EP  - 336
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a12/
LA  - en
ID  - ADM_2017_24_2_a12
ER  - 
%0 Journal Article
%A Chia Zargeh
%T A note on simplicity of contact Lie algebras over~$\operatorname{GF}(2)$
%J Algebra and discrete mathematics
%D 2017
%P 331-336
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a12/
%G en
%F ADM_2017_24_2_a12
Chia Zargeh. A note on simplicity of contact Lie algebras over~$\operatorname{GF}(2)$. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 331-336. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a12/

[1] T. Brough, B. Eick, Graded Lie algebras of Cartan type in characteristic 2, arXiv: 1510.02289[math.RA]

[2] G. Brown, “Families of simple Lie algebras of characteristic two”, Comm. Algebra, 23:3 (1995), 941–954 | DOI | MR | Zbl

[3] B. Eick, “Some new simple Lie algebras in characteristic 2”, J. Symbolic Comput., 45:9 (2010), 943–951 | DOI | MR | Zbl

[4] G. Hiss, “Die adjungierten Darstellungen der Chevalley-Gruppen”, Arch. Math., 42 (1984), 408–416 | DOI | MR | Zbl

[5] G. M. D. Hogeweij, “Almost-classical Lie algebras. I”, Nederl. Akad. Wetensch. Indag. Math., 44:4 (1982), 441–452 ; “Almost-classical Lie algebras. II”, 453–460 | DOI | MR | Zbl

[6] L. Lin, “Lie algebras $K(\mathbb{F},\mu_i)$ of Cartan type of characteristic $p=2$ and their subalgebras”, J. East China Norm. Univ. Natur. Sci. Ed., 1 (1988), 16–23 | MR | Zbl

[7] A. Premet, H. Strade, “Classification of finite dimensional simple Lie algebras in prime characteristics”, Representations of algebraic groups, quantum groups, and Lie algebras, Contemp. Math., 413, Amer. Math. Soc., Providence, RI, 2006, 185–214 | DOI | MR | Zbl

[8] S. M. Skryabin, “Modular Lie algebras of Cartan type over algebraically non-closed fields. II”, Comm. Algebra, 24:4 (1995), 1403–1453 | DOI | MR

[9] H. Strade, Simple Lie algebras over fields of positive characteristics, v. I, de Gruyter Exposition in Mathematics, 38, Structure theory, Walter de Gruyter Co., Berlin, 2004 | DOI | MR

[10] H. Strade and R. Fransteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, 116, Marcel Dekker Inc., New York, 1988 | MR | Zbl

[11] The GAP Group, GAP — Groups, Algorithms and Programming. Version 4.4., 2015 http://www.gap-system.org