Total global neighbourhood domination
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 320-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $D$ of the vertex set of a connected graph $G$ is called a total global neighbourhood dominating set ($\mathrm{tgnd}$-set) of $G$ if and only if $D$ is a total dominating set of $G$ as well as $G^{N}$, where $G^{N}$ is the neighbourhood graph of $G$. The total global neighbourhood domination number ($\mathrm{tgnd}$-number) is the minimum cardinality of a total global neighbourhood dominating set of $G$ and is denoted by $\gamma_{\mathrm{tgn}}(G)$. In this paper sharp bounds for $\gamma_{\mathrm{tgn}}$ are obtained. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of $G$ to be a total global neighbourhood dominating set for $G$ is given and also characterized the graphs of order $n(\geq 3)$ having $\mathrm{tgnd}$-numbers $2, n - 1, n$.
Keywords: semi complete graph, total dominating set, connected dominating set.
@article{ADM_2017_24_2_a11,
     author = {S. V. Siva Rama Raju and I. H. Nagaraja Rao},
     title = {Total global neighbourhood domination},
     journal = {Algebra and discrete mathematics},
     pages = {320--330},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a11/}
}
TY  - JOUR
AU  - S. V. Siva Rama Raju
AU  - I. H. Nagaraja Rao
TI  - Total global neighbourhood domination
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 320
EP  - 330
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a11/
LA  - en
ID  - ADM_2017_24_2_a11
ER  - 
%0 Journal Article
%A S. V. Siva Rama Raju
%A I. H. Nagaraja Rao
%T Total global neighbourhood domination
%J Algebra and discrete mathematics
%D 2017
%P 320-330
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a11/
%G en
%F ADM_2017_24_2_a11
S. V. Siva Rama Raju; I. H. Nagaraja Rao. Total global neighbourhood domination. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 320-330. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a11/

[1] Bondy J. A. and Murthy U. S. R., Graph theory with Applications, The Macmillan Press Ltd, 1976 | MR

[2] D. F. Rall, “Dominating a graph and its complement”, Congr. Numer., 80 (1991), 89–95 | MR | Zbl

[3] E. J. Cockayne, et al., “Total domination in graphs”, Networks, 10 (1980), 211–219 | DOI | MR | Zbl

[4] E. Sampathkumar, H. B. Walikar, “The connected Domination Number of a Graph”, J. Math.Phy. Sci., 13 (1979), 607–613 | MR | Zbl

[5] I. H. Naga Raja Rao, S. V. Siva Rama Raju, “On Semi Complete Graphs”, International Journal of Computational Cognition, 7:3 (2009), 50–54 | MR

[6] I. H. Naga Raja Rao, S. V. Siva Rama Raju, “Global Neighbourhood Domination”, Proyecciones Journal of Mathematics, 33:1 (2014) | MR | Zbl

[7] R. C. Brigham, R. D. Dutton, “On Neighbourhood Graphs”, J. Combin. Inform. System Sci., 12 (1987), 75–85 | MR

[8] Teresa W. Haynes, et al., Fundamentals of dominations in graphs, Marcel Dekker, Inc., New York–Basel