On locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 308-319

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain the description of locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups.
Keywords: normal subgroup, abnormal subgroup, pronormal subgroup, self-normalizing subgroup, $\mathrm{GNA}$-subgroup, locally finite group, locally nilpotent residual.
@article{ADM_2017_24_2_a10,
     author = {Aleksandr A. Pypka},
     title = {On locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {308--319},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a10/}
}
TY  - JOUR
AU  - Aleksandr A. Pypka
TI  - On locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 308
EP  - 319
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a10/
LA  - en
ID  - ADM_2017_24_2_a10
ER  - 
%0 Journal Article
%A Aleksandr A. Pypka
%T On locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups
%J Algebra and discrete mathematics
%D 2017
%P 308-319
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a10/
%G en
%F ADM_2017_24_2_a10
Aleksandr A. Pypka. On locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 308-319. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a10/