On locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 308-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain the description of locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups.
Keywords: normal subgroup, abnormal subgroup, pronormal subgroup, self-normalizing subgroup, $\mathrm{GNA}$-subgroup, locally finite group, locally nilpotent residual.
@article{ADM_2017_24_2_a10,
     author = {Aleksandr A. Pypka},
     title = {On locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {308--319},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a10/}
}
TY  - JOUR
AU  - Aleksandr A. Pypka
TI  - On locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 308
EP  - 319
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a10/
LA  - en
ID  - ADM_2017_24_2_a10
ER  - 
%0 Journal Article
%A Aleksandr A. Pypka
%T On locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups
%J Algebra and discrete mathematics
%D 2017
%P 308-319
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a10/
%G en
%F ADM_2017_24_2_a10
Aleksandr A. Pypka. On locally finite groups whose cyclic subgroups are $\mathrm{GNA}$-subgroups. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 308-319. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a10/

[1] M. S. Ba, Z. I. Borevich, “On arrangement of intermediate subgroups”, Rings and Linear Groups, Kubansk. Univ., Krasnodar, 1988, 14–41 | MR

[2] R. Baer, “Situation der Untergruppen und Struktur der Gruppe”, S.-B. Heidelberg Acad. Math.-Nat. Klasse, 2 (1933), 12–17

[3] A. Ballester-Bolinches, R. Esteban-Romero, “Sylow permutable subnormal subgroups of finite groups”, J. Algebra, 251:2 (2002), 727–738 | DOI | MR | Zbl

[4] A. Ballester-Bolinches, L. A. Kurdachenko, J. Otal, T. Pedraza, “Infinite groups with many permutable subgroups”, Rev. Mat. Iberoam., 24:3 (2008), 745–764 | DOI | MR | Zbl

[5] S. N. Chernikov, “On complementability of the Sylow $\pi$-subgroups in some classes of infinite groups”, Math. Sb., 37 (1955), 557–566 | MR | Zbl

[6] R. Dedekind, “Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind”, Math. Ann., 48:4 (1897), 548–561 | DOI | MR | Zbl

[7] M. R. Dixon, Sylow theory, formations and Fitting classes in locally finite groups, Series in Algebra, 2, World Scientific, Singapore, 1994 | MR | Zbl

[8] W. Feit, J. G. Thompson, “Solvability of groups of odd order”, Pacific J. Math., 13:3 (1963), 755–787 | MR

[9] L. A. Kurdachenko, A. A. Pypka, I. Ya. Subbotin, “On some generalization of normal subgroups”, In Proceedings of the “Meeting on Group Theory and its applications, on the occasion of Javier Otal's 60th birthday” (Zaragoza, 2011), Biblioteca Rev. Mat. Iberoam., 2012, 185–202 | MR

[10] A. G. Kurosh, The theory of groups, Nauka, Moskow, 1967 | MR

[11] S. Li, Z. Meng, “Groups with conjugate-permutable conditions”, Math. Proc. Royal Irish Academy, Ser. A, 107 (2007), 115–121 | MR

[12] D. H. McLain, “Finiteness conditions in locally soluble groups”, J. London Math. Soc., 34:1 (1959), 101–107 | DOI | MR | Zbl

[13] A. Yu. Ol'shanskii, Geometry of defining relations in groups, Kluwer Acad. Publishers, 1991

[14] A. A. Pypka, N. A. Turbay, “On $\mathrm{GNA}$-subgroups in locally finite groups”, Proc. of Francisk Scorina Gomel state university, 93:6 (2015), 97–100 | MR | Zbl

[15] J. S. Rose, A course on group theory, Cambridge Univ. Press, Cambridge, 1978 | MR | Zbl

[16] R. Schmidt, Subgroup lattices of groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl