On the genus of the annihilator graph of a~commutative ring
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 191-208

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring and $Z(R)^*$ be its set of non-zero zero-divisors. The annihilator graph of a commutative ring $R$ is the simple undirected graph $\operatorname{AG}(R)$ with vertices $Z(R)^*$, and two distinct vertices $x$ and $y$ are adjacent if and only if $\operatorname{ann}(xy)\neq \operatorname{ann}(x)\cup \operatorname{ann}(y)$. The notion of annihilator graph has been introduced and studied by A. Badawi [7]. In this paper, we determine isomorphism classes of finite commutative rings with identity whose $\operatorname{AG}(R)$ has genus less or equal to one.
Keywords: commutative ring, annihilator graph, planar, local rings.
Mots-clés : genus
@article{ADM_2017_24_2_a1,
     author = {T. Tamizh Chelvam and K. Selvakumar},
     title = {On the genus of the annihilator graph of a~commutative ring},
     journal = {Algebra and discrete mathematics},
     pages = {191--208},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a1/}
}
TY  - JOUR
AU  - T. Tamizh Chelvam
AU  - K. Selvakumar
TI  - On the genus of the annihilator graph of a~commutative ring
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 191
EP  - 208
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a1/
LA  - en
ID  - ADM_2017_24_2_a1
ER  - 
%0 Journal Article
%A T. Tamizh Chelvam
%A K. Selvakumar
%T On the genus of the annihilator graph of a~commutative ring
%J Algebra and discrete mathematics
%D 2017
%P 191-208
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a1/
%G en
%F ADM_2017_24_2_a1
T. Tamizh Chelvam; K. Selvakumar. On the genus of the annihilator graph of a~commutative ring. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 191-208. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a1/