On the genus of the annihilator graph of a~commutative ring
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 191-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring and $Z(R)^*$ be its set of non-zero zero-divisors. The annihilator graph of a commutative ring $R$ is the simple undirected graph $\operatorname{AG}(R)$ with vertices $Z(R)^*$, and two distinct vertices $x$ and $y$ are adjacent if and only if $\operatorname{ann}(xy)\neq \operatorname{ann}(x)\cup \operatorname{ann}(y)$. The notion of annihilator graph has been introduced and studied by A. Badawi [7]. In this paper, we determine isomorphism classes of finite commutative rings with identity whose $\operatorname{AG}(R)$ has genus less or equal to one.
Keywords: commutative ring, annihilator graph, planar, local rings.
Mots-clés : genus
@article{ADM_2017_24_2_a1,
     author = {T. Tamizh Chelvam and K. Selvakumar},
     title = {On the genus of the annihilator graph of a~commutative ring},
     journal = {Algebra and discrete mathematics},
     pages = {191--208},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a1/}
}
TY  - JOUR
AU  - T. Tamizh Chelvam
AU  - K. Selvakumar
TI  - On the genus of the annihilator graph of a~commutative ring
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 191
EP  - 208
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a1/
LA  - en
ID  - ADM_2017_24_2_a1
ER  - 
%0 Journal Article
%A T. Tamizh Chelvam
%A K. Selvakumar
%T On the genus of the annihilator graph of a~commutative ring
%J Algebra and discrete mathematics
%D 2017
%P 191-208
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a1/
%G en
%F ADM_2017_24_2_a1
T. Tamizh Chelvam; K. Selvakumar. On the genus of the annihilator graph of a~commutative ring. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 191-208. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a1/

[1] S. Akbari, H. R. Maimani and S. Yassemi, “When a zero-divisor graph is planar or a complete $r$-partite graph”, J. Algebra, 270 (2003), 169–180 | DOI | MR | Zbl

[2] D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, “The zero-divisor graph of a commutative ring II”, Lecture Notes in Pure and Appl. Math., 202, Marcel Dekker, New York, 2001, 61–72 | MR

[3] D. F. Anderson and P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[4] T. Asir and T. Tamizh Chelvam, “On the genus of generalized unit and unitary Cayley graphs of a commutative ring”, Acta Math. Hungar., 142:2 (2014), 444–458 | DOI | MR | Zbl

[5] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969 | MR | Zbl

[6] J. Battle, F. Harary, Y. Kodama, J. W. T. Youngs, “Additivity of the genus of a graph”, Bull. Amer. Math. Soc., 68 (1962), 565–568 | DOI | MR | Zbl

[7] A. Badawi, “On the annihilator graph of a commutative ring”, Comm. Algebra, 42:1 (2014), 108–121 | DOI | MR | Zbl

[8] I. Beck, “Coloring of commutative rings”, J. Algebra, 116 (1988), 208–226 | DOI | MR | Zbl

[9] R. Belshoff, J. Chapman, “Planar zero-divisor graphs”, J. Algebra, 316:1 (2007), 471–480 | DOI | MR | Zbl

[10] G. Chartrand and L. Lesniak, Graphs and Digraphs, Wadsworth and Brooks/Cole, Monterey, CA, 1986 | MR | Zbl

[11] S. Földers and P. L. Hammer, “Split Graphs”, Proc. 8th Southeastern Conf. on Combinatorics, Graph Theory and Computing, eds. F. Koffman et al., Louisiana State Univ., Baton Rouge, Louisianna, 1977, 311–315

[12] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd ed., Elsevier B.V., Amsterdam, 2004 | MR | Zbl

[13] S. P. Redmond, “On zero-divisor graphs of small finite commutative rings”, Discrete Math., 307 (2007), 1155–1166 | DOI | MR | Zbl

[14] S. P. Redmond, “Corrigendum to “On zero-divisor graphs of small finite commutative rings””, Discrete Math., 307 (2007), 2449–2452 | DOI | MR | Zbl

[15] N. O. Smith, “Planar zero-divisor graphs”, Int. J. Comm. Rings, 2:4 (2002), 177–188 | MR

[16] T. Tamizh Chelvam and T. Asir, “On the genus of the total graph of a commutative ring”, Comm. Algebra, 41 (2013), 142–153 | DOI | MR | Zbl

[17] T. Tamizh Chelvam and S. Nithya, “Crosscap of the ideal based zero-divisor graph”, Arab J. Math. Sci., 2 (2015) | DOI | MR | Zbl

[18] T. Tamizh Chelvam and K. Selvakumar, “Central sets in annihilating-ideal graph of a commutative ring”, J. Combin. Math. Combin. Comput., 88 (2014), 277–288 | MR | Zbl

[19] T. Tamizh Chelvam and K. Selvakumar, “Domination in the directed zero-divisor graph of ring of matrices”, J. Combin. Math. Combin. Comput., 91 (2014), 155–163 | MR | Zbl

[20] T. Tamizh Chelvam and K. Selvakumar, “On the intersection graph of gamma sets in the zero-divisor”, Dis. Math. Alg. Appl., 7:1 (2015), 1450067 | DOI | MR | Zbl

[21] T. Tamizh Chelvam and K. Selvakumar, “On the connectivity of the annihilating-ideal graphs”, Discussiones Mathematicae General Algebra and Applications, 35:2 (2015), 195 – 204 | DOI | MR

[22] T. Tamizh Chelvam, K. Selvakumar and V. Ramanathan, “On the planarity of the k-zero-divisor hypergraphs”, AKCE International Journal of Graphs and Combinatorics, 12:2 (2015), 169–176 | DOI | MR | Zbl

[23] H. J. Wang and Neal O. Smith, “Commutative rings with toroidal zero-divisor graphs”, Houston J. Math., 36:1 (2010), 1–31 | MR

[24] H. J. Wang, “Zero-divisor graphs of genus one”, J. Algebra, 304:2 (2006), 666–678 | DOI | MR | Zbl

[25] C. Wickham, “Classification of rings with genus one zero-divisor graphs”, Comm. Algebra, 36 (2008), 325–345 | DOI | MR | Zbl

[26] A. T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1973 | MR | Zbl