Some properties of the nilradical and non-nilradical graphs over finite commutative ring~$\mathbb{Z}_n$
Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 181-190

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{Z}_n$ be the finite commutative ring of residue classes modulo $n$ with identity and $\Gamma(\mathbb{Z}_n)$ be its zero-divisor graph. In this paper, we investigate some properties of nilradical graph, denoted by $N(\mathbb{Z}_n)$ and non-nilradical graph, denoted by $\Omega(\mathbb{Z}_n)$ of $\Gamma(\mathbb{Z}_n)$. In particular, we determine the Chromatic number and Energy of $N(\mathbb{Z}_n)$ and $\Omega(\mathbb{Z}_n)$ for a positive integer $n$. In addition, we have found the conditions in which $N(\mathbb{Z}_n)$ and $\Omega(\mathbb{Z}_n)$ graphs are planar. We have also given MATLAB coding of our calculations.
Keywords: commutative ring, zero-divisor graph, nilradical graph, non-nilradical graph, chromatic number, planar graph, energy of a graph.
@article{ADM_2017_24_2_a0,
     author = {Shalini Chandra and Om Prakash and Sheela Suthar},
     title = {Some properties of the nilradical and non-nilradical graphs over finite commutative ring~$\mathbb{Z}_n$},
     journal = {Algebra and discrete mathematics},
     pages = {181--190},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a0/}
}
TY  - JOUR
AU  - Shalini Chandra
AU  - Om Prakash
AU  - Sheela Suthar
TI  - Some properties of the nilradical and non-nilradical graphs over finite commutative ring~$\mathbb{Z}_n$
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 181
EP  - 190
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a0/
LA  - en
ID  - ADM_2017_24_2_a0
ER  - 
%0 Journal Article
%A Shalini Chandra
%A Om Prakash
%A Sheela Suthar
%T Some properties of the nilradical and non-nilradical graphs over finite commutative ring~$\mathbb{Z}_n$
%J Algebra and discrete mathematics
%D 2017
%P 181-190
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a0/
%G en
%F ADM_2017_24_2_a0
Shalini Chandra; Om Prakash; Sheela Suthar. Some properties of the nilradical and non-nilradical graphs over finite commutative ring~$\mathbb{Z}_n$. Algebra and discrete mathematics, Tome 24 (2017) no. 2, pp. 181-190. http://geodesic.mathdoc.fr/item/ADM_2017_24_2_a0/