Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2017_23_2_a7, author = {Jang Hyun Jo and Jong Bum Lee and Sang Rae Lee}, title = {The $R_{\infty}$ property for {Houghton's} groups}, journal = {Algebra and discrete mathematics}, pages = {249--262}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/} }
TY - JOUR AU - Jang Hyun Jo AU - Jong Bum Lee AU - Sang Rae Lee TI - The $R_{\infty}$ property for Houghton's groups JO - Algebra and discrete mathematics PY - 2017 SP - 249 EP - 262 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/ LA - en ID - ADM_2017_23_2_a7 ER -
Jang Hyun Jo; Jong Bum Lee; Sang Rae Lee. The $R_{\infty}$ property for Houghton's groups. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 249-262. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/
[1] Y. Antolín, J. Burillo, A. Martino, “Conjugacy in Houghton's groups”, Publ. Mat., 59 (2015), 3–16 | DOI | MR | Zbl
[2] C. Bleak, A. Fel'shtyn, D. Gonçalves, “Twisted conjugacy classes in R. Thompson's group $F$”, Pacific J. Math., 238 (2008), 1–6 | DOI | MR | Zbl
[3] J. Burillo, F. Matucci, E. Ventura, “The conjugacy problem in extensions of Thompson's group $F$”, Israel J. Math., 216 (2016), 15–59 | DOI | MR | Zbl
[4] J. Burillo, S. Cleary, A. Martino, C. E. Röver, “Commensurations and metric properties of Houghton's groups”, Pacific J. Math., 285 (2016), 289–301 | DOI | MR
[5] C. Cox, Twisted Conjugacy in Houghton's groups, arXiv: 1410.7051 | MR
[6] K. Dekimpe, D. Gonçalves, “The $R_\infty$ property for free groups, free nilpotent groups and free solvable groups”, Bull. Lond. Math. Soc., 46 (2014), 737–746 | DOI | MR | Zbl
[7] J. Dixon, B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996 | DOI | MR | Zbl
[8] A. Fel'shtyn, “The Reidemeister number of any automorphisms of a Gromov hyperbolic group is infinite”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov., 279 (2001), 229–240 | Zbl
[9] A. Fel'shtyn, D. Gonçalves, “The Reidemeister number of any automorphism of a Baumslag-Solitar group is infinite”, Geometry and dynamics of groups and spaces, Progr. Math., 265, Birkhauser, Basel, 2008, 399–414 | DOI | MR | Zbl
[10] A. Fel'shtyn, R. Hill, “The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion”, K-theory, 8 (1994), 367–393 | DOI | MR | Zbl
[11] D. Gonçalves, D. H. Kochloukova, “Sigma theory and twisted conjugacy classes”, Pacific J. Math., 247 (2010), 335–352 | DOI | MR | Zbl
[12] D. Gonçalves, P. Sankaran, “Twisted conjugacy classes in Richard Thompson's group $T$”, arXiv: 1309.2875
[13] D. Gonçalves, P. Sankaran, Twisted conjugacy classes in generalized Thompson group of type $F$, arXiv: 1312.2167
[14] D. Gonçalves, P. Sankaran, “Sigma theory and twisted conjugacy-II: Houghton groups and pure symmetric automorphism groups”, Pacific J. Math., 280 (2016), 349–369 | DOI | MR | Zbl
[15] D. Gonçalves, P. Wong, “Twisted conjugacy classes in exponential growth groups”, Bull. London Math. Soc., 35 (2003), 261–268 | DOI | MR | Zbl
[16] D. Gonçalves, P. Wong, “Twisted conjugacy classes in nilpotent groups”, J. Reine Angew. Math., 633 (2009), 11–27 | MR | Zbl
[17] K. Y. Ha, J. B. Lee, “The $R_\infty$ property for crystallographic groups of $\mathrm{Sol}$”, Topol. Appl., 181 (2015), 112–133 | DOI | MR | Zbl
[18] K. Y. Ha, J. B. Lee, P. Penninckx, “Formulas for the Reidemeister, Lefschetz and Nielsen coincidence number of maps between infra-nilmanifolds”, Fixed Point Theory Appl., 39 (2012), 1–23 | MR
[19] C. H. Houghton, “The first cohomology of a group with permutation module coefficients”, Arch. Math. (Basel), 31 (1978/79), 254–258 | DOI | MR | Zbl
[20] D. L. Johnson, “Embedding some recursively presented groups”, Groups St Andrews 1997 in Bath, v. II, London Math. Soc. Lecture Note Ser., 261, Cambridge Uni. Press, Cambridge, 1999, 410–416 | MR | Zbl
[21] N. Koban, P. Wong, “A relationship between twisted conjugacy classes and the geometric invariants $\Omega^n$”, Geom. Dedicata, 151 (2011), 233–243 | DOI | MR | Zbl
[22] S. R. Lee, Geometry of Houghton's groups, arXiv: 1212.0257 | MR
[23] G. Levitt, M Lustig, “Most automorphisms of a hyperbolic group have very simple dynamics”, Ann. Sci. École Norm. Sup. (4), 33 (2000), 507–517 | DOI | MR | Zbl
[24] M. Stein, J. Taback, P. Wong, “Automorphisms of higher rank lamplighter groups”, Internat. J. Algebra Comput., 25 (2015), 1275–1299 | DOI | MR | Zbl