The $R_{\infty}$ property for Houghton's groups
Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 249-262

Voir la notice de l'article provenant de la source Math-Net.Ru

We study twisted conjugacy classes of a family of groups which are called Houghton's groups $\mathcal{H}_n$ ($n\in\mathbb{N}$), the group of translations of $n$ rays of discrete points at infinity. We prove that the Houghton's groups $\mathcal{H}_n$ have the $R_\infty$ property for all $n\in \mathbb{N}$.
Keywords: Houghton's group, $R_\infty$ property, Reidemeister number.
@article{ADM_2017_23_2_a7,
     author = {Jang Hyun Jo and Jong Bum Lee and Sang Rae Lee},
     title = {The $R_{\infty}$ property for {Houghton's} groups},
     journal = {Algebra and discrete mathematics},
     pages = {249--262},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/}
}
TY  - JOUR
AU  - Jang Hyun Jo
AU  - Jong Bum Lee
AU  - Sang Rae Lee
TI  - The $R_{\infty}$ property for Houghton's groups
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 249
EP  - 262
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/
LA  - en
ID  - ADM_2017_23_2_a7
ER  - 
%0 Journal Article
%A Jang Hyun Jo
%A Jong Bum Lee
%A Sang Rae Lee
%T The $R_{\infty}$ property for Houghton's groups
%J Algebra and discrete mathematics
%D 2017
%P 249-262
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/
%G en
%F ADM_2017_23_2_a7
Jang Hyun Jo; Jong Bum Lee; Sang Rae Lee. The $R_{\infty}$ property for Houghton's groups. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 249-262. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/