The $R_{\infty}$ property for Houghton's groups
Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 249-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study twisted conjugacy classes of a family of groups which are called Houghton's groups $\mathcal{H}_n$ ($n\in\mathbb{N}$), the group of translations of $n$ rays of discrete points at infinity. We prove that the Houghton's groups $\mathcal{H}_n$ have the $R_\infty$ property for all $n\in \mathbb{N}$.
Keywords: Houghton's group, $R_\infty$ property, Reidemeister number.
@article{ADM_2017_23_2_a7,
     author = {Jang Hyun Jo and Jong Bum Lee and Sang Rae Lee},
     title = {The $R_{\infty}$ property for {Houghton's} groups},
     journal = {Algebra and discrete mathematics},
     pages = {249--262},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/}
}
TY  - JOUR
AU  - Jang Hyun Jo
AU  - Jong Bum Lee
AU  - Sang Rae Lee
TI  - The $R_{\infty}$ property for Houghton's groups
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 249
EP  - 262
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/
LA  - en
ID  - ADM_2017_23_2_a7
ER  - 
%0 Journal Article
%A Jang Hyun Jo
%A Jong Bum Lee
%A Sang Rae Lee
%T The $R_{\infty}$ property for Houghton's groups
%J Algebra and discrete mathematics
%D 2017
%P 249-262
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/
%G en
%F ADM_2017_23_2_a7
Jang Hyun Jo; Jong Bum Lee; Sang Rae Lee. The $R_{\infty}$ property for Houghton's groups. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 249-262. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a7/

[1] Y. Antolín, J. Burillo, A. Martino, “Conjugacy in Houghton's groups”, Publ. Mat., 59 (2015), 3–16 | DOI | MR | Zbl

[2] C. Bleak, A. Fel'shtyn, D. Gonçalves, “Twisted conjugacy classes in R. Thompson's group $F$”, Pacific J. Math., 238 (2008), 1–6 | DOI | MR | Zbl

[3] J. Burillo, F. Matucci, E. Ventura, “The conjugacy problem in extensions of Thompson's group $F$”, Israel J. Math., 216 (2016), 15–59 | DOI | MR | Zbl

[4] J. Burillo, S. Cleary, A. Martino, C. E. Röver, “Commensurations and metric properties of Houghton's groups”, Pacific J. Math., 285 (2016), 289–301 | DOI | MR

[5] C. Cox, Twisted Conjugacy in Houghton's groups, arXiv: 1410.7051 | MR

[6] K. Dekimpe, D. Gonçalves, “The $R_\infty$ property for free groups, free nilpotent groups and free solvable groups”, Bull. Lond. Math. Soc., 46 (2014), 737–746 | DOI | MR | Zbl

[7] J. Dixon, B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996 | DOI | MR | Zbl

[8] A. Fel'shtyn, “The Reidemeister number of any automorphisms of a Gromov hyperbolic group is infinite”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov., 279 (2001), 229–240 | Zbl

[9] A. Fel'shtyn, D. Gonçalves, “The Reidemeister number of any automorphism of a Baumslag-Solitar group is infinite”, Geometry and dynamics of groups and spaces, Progr. Math., 265, Birkhauser, Basel, 2008, 399–414 | DOI | MR | Zbl

[10] A. Fel'shtyn, R. Hill, “The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion”, K-theory, 8 (1994), 367–393 | DOI | MR | Zbl

[11] D. Gonçalves, D. H. Kochloukova, “Sigma theory and twisted conjugacy classes”, Pacific J. Math., 247 (2010), 335–352 | DOI | MR | Zbl

[12] D. Gonçalves, P. Sankaran, “Twisted conjugacy classes in Richard Thompson's group $T$”, arXiv: 1309.2875

[13] D. Gonçalves, P. Sankaran, Twisted conjugacy classes in generalized Thompson group of type $F$, arXiv: 1312.2167

[14] D. Gonçalves, P. Sankaran, “Sigma theory and twisted conjugacy-II: Houghton groups and pure symmetric automorphism groups”, Pacific J. Math., 280 (2016), 349–369 | DOI | MR | Zbl

[15] D. Gonçalves, P. Wong, “Twisted conjugacy classes in exponential growth groups”, Bull. London Math. Soc., 35 (2003), 261–268 | DOI | MR | Zbl

[16] D. Gonçalves, P. Wong, “Twisted conjugacy classes in nilpotent groups”, J. Reine Angew. Math., 633 (2009), 11–27 | MR | Zbl

[17] K. Y. Ha, J. B. Lee, “The $R_\infty$ property for crystallographic groups of $\mathrm{Sol}$”, Topol. Appl., 181 (2015), 112–133 | DOI | MR | Zbl

[18] K. Y. Ha, J. B. Lee, P. Penninckx, “Formulas for the Reidemeister, Lefschetz and Nielsen coincidence number of maps between infra-nilmanifolds”, Fixed Point Theory Appl., 39 (2012), 1–23 | MR

[19] C. H. Houghton, “The first cohomology of a group with permutation module coefficients”, Arch. Math. (Basel), 31 (1978/79), 254–258 | DOI | MR | Zbl

[20] D. L. Johnson, “Embedding some recursively presented groups”, Groups St Andrews 1997 in Bath, v. II, London Math. Soc. Lecture Note Ser., 261, Cambridge Uni. Press, Cambridge, 1999, 410–416 | MR | Zbl

[21] N. Koban, P. Wong, “A relationship between twisted conjugacy classes and the geometric invariants $\Omega^n$”, Geom. Dedicata, 151 (2011), 233–243 | DOI | MR | Zbl

[22] S. R. Lee, Geometry of Houghton's groups, arXiv: 1212.0257 | MR

[23] G. Levitt, M Lustig, “Most automorphisms of a hyperbolic group have very simple dynamics”, Ann. Sci. École Norm. Sup. (4), 33 (2000), 507–517 | DOI | MR | Zbl

[24] M. Stein, J. Taback, P. Wong, “Automorphisms of higher rank lamplighter groups”, Internat. J. Algebra Comput., 25 (2015), 1275–1299 | DOI | MR | Zbl