Generators and ranks in finite partial transformation semigroups
Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 237-248

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the concept of path-cycles, defined in [2], to the semigroup $\mathcal{P}_{n}$, of all partial maps on $X_{n}=\{1,2,\ldots,n\}$, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of $\mathcal{P}_{n}$ by means of path-cycles. The device is used to obtain information about generating sets for the semigroup $\mathcal{P}_{n}\setminus\mathcal{S}_{n}$, of all singular partial maps of $X_{n}$. Moreover, by analogy with [3], we give a definition for the ($m,r$)-rank of $\mathcal{P}_{n}\setminus\mathcal{S}_{n}$ and show that it is $\frac{n(n+1)}{2}$.
Keywords: path-cycle, $(m,r)$-path-cycle, $m$-path, generating set, $(m,r)$-rank.
@article{ADM_2017_23_2_a6,
     author = {Goje Uba Garba and Abdussamad Tanko Imam},
     title = {Generators and ranks in finite partial transformation semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {237--248},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a6/}
}
TY  - JOUR
AU  - Goje Uba Garba
AU  - Abdussamad Tanko Imam
TI  - Generators and ranks in finite partial transformation semigroups
JO  - Algebra and discrete mathematics
PY  - 2017
SP  - 237
EP  - 248
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a6/
LA  - en
ID  - ADM_2017_23_2_a6
ER  - 
%0 Journal Article
%A Goje Uba Garba
%A Abdussamad Tanko Imam
%T Generators and ranks in finite partial transformation semigroups
%J Algebra and discrete mathematics
%D 2017
%P 237-248
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a6/
%G en
%F ADM_2017_23_2_a6
Goje Uba Garba; Abdussamad Tanko Imam. Generators and ranks in finite partial transformation semigroups. Algebra and discrete mathematics, Tome 23 (2017) no. 2, pp. 237-248. http://geodesic.mathdoc.fr/item/ADM_2017_23_2_a6/